論文の概要: On Extending the Automatic Test Markup Language (ATML) for Machine Learning
- arxiv url: http://arxiv.org/abs/2404.03769v1
- Date: Thu, 4 Apr 2024 19:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 17:35:40.857447
- Title: On Extending the Automatic Test Markup Language (ATML) for Machine Learning
- Title(参考訳): 機械学習のための自動テストマークアップ言語(ATML)の拡張について
- Authors: Tyler Cody, Bingtong Li, Peter A. Beling,
- Abstract要約: 本稿では,自動テストマークアップ言語(ATML)として知られるIEEE標準1671(IEEE Std 1671)の機械学習(ML)アプリケーションテストへの適用性について検討する。
本稿では, 対向ロバスト性やドリフト検出などの様々なテストのモデル化を通じて, 特定のアプリケーションに適用可能なフレームワークを提案する。
我々は、ATMLは、MLアプリケーションの効果的でほぼリアルタイムな運用T&Eのための有望なツールである、と結論付けている。
- 参考スコア(独自算出の注目度): 3.6458439734112695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the urgent need for messaging standards in the operational test and evaluation (T&E) of machine learning (ML) applications, particularly in edge ML applications embedded in systems like robots, satellites, and unmanned vehicles. It examines the suitability of the IEEE Standard 1671 (IEEE Std 1671), known as the Automatic Test Markup Language (ATML), an XML-based standard originally developed for electronic systems, for ML application testing. The paper explores extending IEEE Std 1671 to encompass the unique challenges of ML applications, including the use of datasets and dependencies on software. Through modeling various tests such as adversarial robustness and drift detection, this paper offers a framework adaptable to specific applications, suggesting that minor modifications to ATML might suffice to address the novelties of ML. This paper differentiates ATML's focus on testing from other ML standards like Predictive Model Markup Language (PMML) or Open Neural Network Exchange (ONNX), which concentrate on ML model specification. We conclude that ATML is a promising tool for effective, near real-time operational T&E of ML applications, an essential aspect of AI lifecycle management, safety, and governance.
- Abstract(参考訳): 本稿では、機械学習(ML)アプリケーションの運用テストおよび評価(T&E)において、特にロボット、衛星、無人車両などのシステムに埋め込まれたエッジMLアプリケーションにおいて、メッセージ標準が緊急に必要となることを論じる。
IEEE標準1671 (IEEE Std 1671) は、ATML(Automatic Test Markup Language)として知られている。
論文では、データセットの使用やソフトウェアへの依存性など、MLアプリケーションのユニークな課題をカバーするために、IEEE Std 1671を拡張している。
本稿では, 対向ロバスト性やドリフト検出などの様々なテストのモデル化を通じて, 特定のアプリケーションに適用可能なフレームワークを提供する。
本稿では、予測モデルマークアップ言語(PMML)や、MLモデル仕様に重点を置くOpen Neural Network Exchange(ONNX)など、他のML標準に対するATMLの焦点を区別する。
私たちは、AIライフサイクル管理、安全性、ガバナンスの重要な側面である、MLアプリケーションの効果的でほぼリアルタイムな運用T&Eのための有望なツールである、と結論付けました。
関連論文リスト
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - A Cyber Manufacturing IoT System for Adaptive Machine Learning Model Deployment by Interactive Causality Enabled Self-Labeling [0.0]
本稿では、エンドツーエンドのデータストリーミングパイプライン、MLサービス統合、自動自己ラベルサービスで構成されるAdaptIoTシステムを提案する。
このセルフラベルサービスは、因果的知識ベースと自動化されたフルサイクルのセルフラベルで構成され、複数のMLモデルを同時に適応させる。
自己ラベル適応型MLアプリケーションの実演はメーカースペースを用いて行われ、信頼性の高い性能を示す。
論文 参考訳(メタデータ) (2024-04-09T03:10:45Z) - SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems [1.2277343096128712]
QoS(Quality of Service)の維持にはMLS(Machine Learning-Enabled Systems)が不可欠である
機械学習モデルバランサ(Machine Learning Model Balancer)は、動的MLモデルの切り替えを容易にすることで、これらの不確実性に対処する概念である。
本稿では,このようなシステムにおける自己適応能力を高めるために開発されたSWITCHを紹介する。
論文 参考訳(メタデータ) (2024-02-09T11:56:44Z) - A Multivocal Literature Review on the Benefits and Limitations of
Automated Machine Learning Tools [9.69672653683112]
我々は多言語文献レビューを行い、学術文献から54の資料と、AutoMLの利点と限界について報告した灰色文献から108の資料を同定した。
メリットについては、AutoMLツールがMLの中核ステップの合理化に役立つ点を強調します。
AutoMLの普及の障害となるいくつかの制限を強調します。
論文 参考訳(メタデータ) (2024-01-21T01:39:39Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat [5.839906946900443]
我々は,モノのインターネット(IoT)分野に着目した機械学習対応ソフトウェアシステムの開発に,MDEパラダイムを採用することを提案する。
ケーススタディで実証されたように、最先端のオープンソースモデリングツールであるMontiAnnaとML-Quadratが、この目的のためにどのように使用できるかを説明します。
論文 参考訳(メタデータ) (2022-09-15T13:21:16Z) - Mutation Testing framework for Machine Learning [0.0]
機械学習モデルの失敗は、生命や財産の喪失という観点から、深刻な結果をもたらす可能性がある。
世界中の開発者、科学者、そしてMLコミュニティは、重要なMLアプリケーションのための信頼性の高いテストアーキテクチャを構築しなければなりません。
この記事では、機械学習システム(MLS)テスト、その進化、現在のパラダイム、将来の作業に関する洞察的な旅を提供します。
論文 参考訳(メタデータ) (2021-02-19T18:02:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。