Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball
- URL: http://arxiv.org/abs/2404.03778v3
- Date: Mon, 15 Apr 2024 09:55:50 GMT
- Title: Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball
- Authors: Simon Weber, Barış Zöngür, Nikita Araslanov, Daniel Cremers,
- Abstract summary: We show that a flat (non-hierarchical) segmentation network, in which the parents are inferred from the children, has superior segmentation accuracy to the hierarchical approach across the board.
We also study a more principled approach to hierarchical segmentation using the Poincar'e ball model.
- Score: 39.76366192826905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchy is a natural representation of semantic taxonomies, including the ones routinely used in image segmentation. Indeed, recent work on semantic segmentation reports improved accuracy from supervised training leveraging hierarchical label structures. Encouraged by these results, we revisit the fundamental assumptions behind that work. We postulate and then empirically verify that the reasons for the observed improvement in segmentation accuracy may be entirely unrelated to the use of the semantic hierarchy. To demonstrate this, we design a range of cross-domain experiments with a representative hierarchical approach. We find that on the new testing domains, a flat (non-hierarchical) segmentation network, in which the parents are inferred from the children, has superior segmentation accuracy to the hierarchical approach across the board. Complementing these findings and inspired by the intrinsic properties of hyperbolic spaces, we study a more principled approach to hierarchical segmentation using the Poincar\'e ball model. The hyperbolic representation largely outperforms the previous (Euclidean) hierarchical approach as well and is on par with our flat Euclidean baseline in terms of segmentation accuracy. However, it additionally exhibits surprisingly strong calibration quality of the parent nodes in the semantic hierarchy, especially on the more challenging domains. Our combined analysis suggests that the established practice of hierarchical segmentation may be limited to in-domain settings, whereas flat classifiers generalize substantially better, especially if they are modeled in the hyperbolic space.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Learning Hierarchical Semantic Classification by Grounding on Consistent Image Segmentations [37.80849457554078]
Hierarchical semantic classification requires the prediction of a taxonomy tree instead of a single flat level of the tree.
We build upon recent work on learning hierarchical segmentation for flat-level recognition.
We introduce a Tree-path KL Divergence loss to enforce consistent accurate predictions across levels.
arXiv Detail & Related papers (2024-06-17T14:56:51Z) - Are we describing the same sound? An analysis of word embedding spaces
of expressive piano performance [4.867952721052875]
We investigate the uncertainty for the domain of characterizations of expressive piano performance.
We test five embedding models and their similarity structure for correspondence with the ground truth.
The quality of embedding models shows great variability with respect to this task.
arXiv Detail & Related papers (2023-12-31T12:20:03Z) - A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties [53.177550970052174]
ProLab is a novel approach using property-level label space for creating strong interpretable segmentation models.
It uses descriptive properties grounded in common sense knowledge for supervising segmentation models.
arXiv Detail & Related papers (2023-12-21T11:43:41Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
We show that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes.
We introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure.
Our method ranks 1st and sets a new record on the ScanNet200 test leaderboard.
arXiv Detail & Related papers (2023-01-03T13:51:51Z) - Far Away in the Deep Space: Dense Nearest-Neighbor-Based
Out-of-Distribution Detection [33.78080060234557]
Nearest-Neighbors approaches have been shown to work well in object-centric data domains.
We show that nearest-neighbor approaches also yield state-of-the-art results on dense novelty detection in complex driving scenes.
arXiv Detail & Related papers (2022-11-12T13:32:19Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
We study whether a hyperbolic geometry better matches the underlying structure of the object classification space.
We incorporate a hyperbolic classifier in two-stage, keypoint-based, and transformer-based object detection architectures.
We observe categorical class hierarchies emerging in the structure of the classification space, resulting in lower classification errors and boosting the overall object detection performance.
arXiv Detail & Related papers (2022-03-15T16:43:40Z) - TopicNet: Semantic Graph-Guided Topic Discovery [51.71374479354178]
Existing deep hierarchical topic models are able to extract semantically meaningful topics from a text corpus in an unsupervised manner.
We introduce TopicNet as a deep hierarchical topic model that can inject prior structural knowledge as an inductive bias to influence learning.
arXiv Detail & Related papers (2021-10-27T09:07:14Z) - Hierarchical Pyramid Representations for Semantic Segmentation [0.0]
We learn the structures of objects and the hierarchy among objects because context is based on these intrinsic properties.
In this study, we design novel hierarchical, contextual, and multiscale pyramidal representations to capture the properties from an input image.
Our proposed method achieves state-of-the-art performance in PASCAL Context.
arXiv Detail & Related papers (2021-04-05T06:39:12Z) - Rethinking Semantic Segmentation Evaluation for Explainability and Model
Selection [12.786648212233116]
We introduce a new metric to assess region-based over- and under-segmentation.
We analyze and compare it to other metrics, demonstrating that the use of our metric lends greater explainability to semantic segmentation model performance in real-world applications.
arXiv Detail & Related papers (2021-01-21T03:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.