論文の概要: Mitigating Heterogeneity in Federated Multimodal Learning with Biomedical Vision-Language Pre-training
- arxiv url: http://arxiv.org/abs/2404.03854v1
- Date: Fri, 5 Apr 2024 01:17:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 17:16:00.514780
- Title: Mitigating Heterogeneity in Federated Multimodal Learning with Biomedical Vision-Language Pre-training
- Title(参考訳): バイオメディカルビジョンランゲージ・プレトレーニングによるフェデレーション・マルチモーダル学習における不均一性の軽減
- Authors: Zitao Shuai, Liyue Shen,
- Abstract要約: 視覚言語事前学習はマルチモーダル表現学習の効率的なスキームであるが,事前学習には大規模マルチモーダルデータが必要である。
本稿では,FedRGB(Federated Distributional Robust Guidance-Based)学習フレームワークを提案する。
具体的には、特徴歪みを低減するためにガイダンスに基づく局所訓練手法を用い、分布に基づくmin-max最適化を用いて、偏りのないクロスモーダルアライメントを学習する。
- 参考スコア(独自算出の注目度): 3.249954379196379
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vision-language pre-training (VLP) has arised as an efficient scheme for multimodal representation learning, but it requires large-scale multimodal data for pre-training, making it an obstacle especially for biomedical applications. To overcome the data limitation, federated learning (FL) can be a promising strategy to scale up the dataset for biomedical VLP while protecting data privacy. However, client data are often heterogeneous in real-world scenarios, and we observe that local training on heterogeneous client data would distort the multimodal representation learning and lead to biased cross-modal alignment. To address this challenge, we propose Federated distributional Robust Guidance-Based (FedRGB) learning framework for federated VLP with robustness to data heterogeneity. Specifically, we utilize a guidance-based local training scheme to reduce feature distortions, and employ a distribution-based min-max optimization to learn unbiased cross-modal alignment. The experiments on real-world datasets show our method successfully promotes efficient federated multimodal learning for biomedical VLP with data heterogeneity.
- Abstract(参考訳): 視覚言語事前学習(VLP)は、マルチモーダル表現学習の効率的なスキームとして生まれてきたが、事前学習には大規模なマルチモーダルデータが必要であるため、特に医学的応用において障害となる。
データ制限を克服するために、フェデレートドラーニング(FL)は、データのプライバシーを保護しながら、バイオメディカルなVLPのためのデータセットをスケールアップする有望な戦略である。
しかし、クライアントデータは実世界のシナリオでは不均一であることが多く、不均一なクライアントデータに対する局所的な訓練がマルチモーダル表現学習を歪め、偏りのあるクロスモーダルアライメントにつながることが観察される。
この課題に対処するために、フェデレートされたVLPのためのフェデレーション分散ロバストガイダンスベース(FedRGB)学習フレームワークを提案する。
具体的には、特徴歪みを低減するためにガイダンスに基づく局所訓練手法を用い、分布に基づくmin-max最適化を用いて、偏りのないクロスモーダルアライメントを学習する。
実世界のデータセットを用いた実験により,データ不均一性を考慮したバイオメディカルVLPのための効率的なフェデレーション型マルチモーダル学習の促進に成功した。
関連論文リスト
- Federated Impression for Learning with Distributed Heterogeneous Data [19.50235109938016]
フェデレートラーニング(FL)は、データを共有することなく、クライアント間で分散データセットから学習できるパラダイムを提供する。
FLでは、データ収集プロトコルや患者人口の多様さにより、異なる保健所のデータに準最適収束が一般的である。
我々は,グローバル情報を表す合成データをフェデレーションとして復元することで,破滅的な忘れを緩和するFedImpresを提案する。
論文 参考訳(メタデータ) (2024-09-11T15:37:52Z) - FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
我々は,データの不均一性に対処する新しいマルチエージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
その結果,FedMRLが最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-08T10:10:07Z) - Vertical Federated Learning Hybrid Local Pre-training [4.31644387824845]
垂直フェデレート学習(VFL)のための新しいVFLハイブリッド局所事前学習(VFLHLP)手法を提案する。
VFLHLPはまず、参加者のローカルデータに基づいて、ローカルネットワークを事前訓練する。
そして、これらの事前学習ネットワークを使用して、ラベル付きパーティのサブモデルを調整するか、あるいは、アライメントされたデータ上で下流のフェデレーション学習中に、他のパーティの表現学習を強化する。
論文 参考訳(メタデータ) (2024-05-20T08:57:39Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Federated Multilingual Models for Medical Transcript Analysis [11.877236847857336]
大規模多言語モデルを学習するための連合学習システムを提案する。
トレーニングデータはすべて、中央に送信されることはない。
本研究では,グローバルモデルの性能を,局所的に行うトレーニングステップによってさらに向上させることができることを示す。
論文 参考訳(メタデータ) (2022-11-04T01:07:54Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
医用画像解析のための頑健でラベル効率の良い自己教師型FLフレームワークを提案する。
具体的には,既存のFLパイプラインに分散自己教師型事前学習パラダイムを導入する。
自己教師付きFLアルゴリズムは,分布外データに対してよく一般化し,限定ラベルのシナリオにおいてより効果的にフェデレーションモデルを学習することを示す。
論文 参考訳(メタデータ) (2022-05-17T18:33:43Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。