論文の概要: FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging
- arxiv url: http://arxiv.org/abs/2407.05800v1
- Date: Mon, 8 Jul 2024 10:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:10:47.241168
- Title: FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging
- Title(参考訳): FedMRL:医療画像のための多エージェント深部強化学習を意識したデータ不均一性
- Authors: Pranab Sahoo, Ashutosh Tripathi, Sriparna Saha, Samrat Mondal,
- Abstract要約: 我々は,データの不均一性に対処する新しいマルチエージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
その結果,FedMRLが最先端技術よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 12.307490659840845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advancements in federated learning (FL) for medical image diagnosis, addressing data heterogeneity among clients remains a significant challenge for practical implementation. A primary hurdle in FL arises from the non-IID nature of data samples across clients, which typically results in a decline in the performance of the aggregated global model. In this study, we introduce FedMRL, a novel federated multi-agent deep reinforcement learning framework designed to address data heterogeneity. FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model. Additionally, it employs a multi-agent reinforcement learning (MARL) approach to calculate the proximal term $(\mu)$ for the personalized local objective function, ensuring convergence to the global optimum. Furthermore, FedMRL integrates an adaptive weight adjustment method using a Self-organizing map (SOM) on the server side to counteract distribution shifts among clients' local data distributions. We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques, showing its efficacy in addressing data heterogeneity in federated learning. The code can be found here~{\url{https://github.com/Pranabiitp/FedMRL}}.
- Abstract(参考訳): 近年の医用画像診断におけるフェデレートラーニング(FL)の進歩にもかかわらず、クライアント間のデータの均一性に対処することは、実用上重要な課題である。
FLの主なハードルは、クライアント間のデータサンプルの非IID的な性質から生じ、通常は集約されたグローバルモデルの性能が低下する。
本研究では,データの不均一性に対処する新しい多エージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
さらに、マルチエージェント強化学習(MARL)アプローチを用いて、パーソナライズされた局所目的関数の近位項$(\mu)$を計算し、グローバルな最適化への収束を確保する。
さらに、FedMRLは、サーバ側の自己組織化マップ(SOM)を用いて、クライアントのローカルデータ分布間の分散シフトに対処する適応的な重み調整手法を統合する。
その結果,FedMRLは最先端技術よりも優れており,フェデレート学習におけるデータ不均一性に対処する上での有効性が示された。
コードは、-{\url{https://github.com/Pranabiitp/FedMRL}}で見ることができる。
関連論文リスト
- Federated Impression for Learning with Distributed Heterogeneous Data [19.50235109938016]
フェデレートラーニング(FL)は、データを共有することなく、クライアント間で分散データセットから学習できるパラダイムを提供する。
FLでは、データ収集プロトコルや患者人口の多様さにより、異なる保健所のデータに準最適収束が一般的である。
我々は,グローバル情報を表す合成データをフェデレーションとして復元することで,破滅的な忘れを緩和するFedImpresを提案する。
論文 参考訳(メタデータ) (2024-09-11T15:37:52Z) - FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation [0.4499833362998489]
そこで本研究では,FedGSという新しいFLアグリゲーション手法を提案する。
FedGSは、特に小さな病変に対して、PolypGenとLiTSデータセット間で、FedAvgよりも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-08-21T15:26:21Z) - MH-pFLGB: Model Heterogeneous personalized Federated Learning via Global Bypass for Medical Image Analysis [14.298460846515969]
我々は,公共データセットへの依存を緩和し,非IIDデータ分散の複雑さをナビゲートするために,グローバルバイパス戦略を利用する新しいアプローチであるMH-pFLGBを導入する。
本手法は,クライアント間で情報を共有するグローバルバイパスモデルを統合することで,従来のフェデレーション学習を強化し,各クライアントの性能を高めるネットワークの一部として機能する。
論文 参考訳(メタデータ) (2024-06-29T15:38:37Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
クライアント間のデータの均一性は、フェデレートラーニング(FL)における重要な課題の1つです。
クライアントマッチングと分類器交換によりFedCMEという新しいFLフレームワークを提案する。
実験結果から,FedCMEはFedAvg,FedProx,MOON,FedRSよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-07-17T15:40:45Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
異なるエッジデバイス(クライアント)にまたがるローカルデータの不均一な分散は、フェデレート学習における遅いモデルトレーニングと精度の低下をもたらす。
この研究は、実世界のデータセット、すなわちクラスタスキューで発生する新しい非IID型を導入している。
我々は,各クライアントのインパクト要因を適応的に決定するために,深層強化学習を用いた新しいFLモデルであるFedDRLを提案する。
論文 参考訳(メタデータ) (2022-08-04T04:24:16Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。