論文の概要: Align as Ideal: Cross-Modal Alignment Binding for Federated Medical Vision-Language Pre-training
- arxiv url: http://arxiv.org/abs/2404.03854v2
- Date: Fri, 24 May 2024 15:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:37:11.412821
- Title: Align as Ideal: Cross-Modal Alignment Binding for Federated Medical Vision-Language Pre-training
- Title(参考訳): 理想としてのアライメント:フェデレーション型医用ビジョンランゲージ事前トレーニングのためのクロスモーダルアライメントバインディング
- Authors: Zitao Shuai, Liyue Shen,
- Abstract要約: 視覚言語による事前訓練には大規模なマルチモーダルデータが必要であるため、特に医学的応用において障害となる。
We propose a Federated Align as IDeal (FedAID) framework to bind local client with an ideal crossmodal alignment。
実世界のデータセットを用いた実験では,効率的なフェデレーション型マルチモーダル学習の促進に成功している。
- 参考スコア(独自算出の注目度): 3.249954379196379
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vision-language pre-training (VLP) has arised as an efficient scheme for multimodal representation learning, but it requires large-scale multimodal data for pre-training, making it an obstacle especially for medical applications. To overcome the data limitation, federated learning (FL) can be a promising strategy to scale up the dataset for medical VLP while protecting data privacy. However, client data are often heterogeneous in real-world scenarios, and we observe that local training on heterogeneous client data would distort the multimodal representation learning and lead to biased cross-modal alignment. To address this challenge, we propose a Federated Align as IDeal (FedAID) framework for federated VLP with robustness to data heterogeneity, to bind local clients with an ideal crossmodal alignment. Specifically, to reduce distortions on global-aggregated features while learning diverse semantics from client datasets during local training, we propose to bind the cross-model aligned representation space learned by local models with an unbiased one via guidance-based regularization. Moreover, we employ a distribution-based min-max optimization to learn the unbiased cross-modal alignment at each communication turn of federated pre-training. The experiments on real-world datasets demonstrate our method successfully promotes efficient federated multimodal learning for medical VLP with data heterogeneity.
- Abstract(参考訳): 視覚言語事前学習(VLP)は、マルチモーダル表現学習の効率的なスキームとして生まれてきたが、事前学習には大規模なマルチモーダルデータが必要であるため、特に医学的応用において障害となる。
データ制限を克服するために、フェデレートドラーニング(FL)は、データのプライバシを保護しながら、医療用VLPのデータセットをスケールアップする有望な戦略である。
しかし、クライアントデータは実世界のシナリオでは不均一であることが多く、不均一なクライアントデータに対する局所的な訓練がマルチモーダル表現学習を歪め、偏りのあるクロスモーダルアライメントにつながることが観察される。
この課題に対処するため,FedAID(Federated Align as IDeal)フレームワークを提案する。
具体的には、ローカルトレーニング中にクライアントデータセットから多様なセマンティクスを学習しながら、グローバル集約機能の歪みを低減するために、ローカルモデルによって学習されたクロスモデル整列表現空間を、ガイダンスベースの正規化により非バイアス付きモデルに結合することを提案する。
さらに、分布に基づくmin-max最適化を用いて、フェデレート事前学習の各通信ターンにおける非バイアスのクロスモーダルアライメントを学習する。
実世界のデータセットを用いた実験により,データ不均一性のある医療用VLPのための効率的なフェデレーション型マルチモーダル学習を効果的に促進できることが実証された。
関連論文リスト
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Federated Multilingual Models for Medical Transcript Analysis [11.877236847857336]
大規模多言語モデルを学習するための連合学習システムを提案する。
トレーニングデータはすべて、中央に送信されることはない。
本研究では,グローバルモデルの性能を,局所的に行うトレーニングステップによってさらに向上させることができることを示す。
論文 参考訳(メタデータ) (2022-11-04T01:07:54Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
異なるエッジデバイス(クライアント)にまたがるローカルデータの不均一な分散は、フェデレート学習における遅いモデルトレーニングと精度の低下をもたらす。
この研究は、実世界のデータセット、すなわちクラスタスキューで発生する新しい非IID型を導入している。
我々は,各クライアントのインパクト要因を適応的に決定するために,深層強化学習を用いた新しいFLモデルであるFedDRLを提案する。
論文 参考訳(メタデータ) (2022-08-04T04:24:16Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
従来のフェデレーション学習は、分散データによるクライアントのフェデレーションのためのグローバルモデルをトレーニングすることを目的としている。
非IIDデータセット間の分散シフトは、データヘテロジニティとしても知られ、この1つのグローバルモデルに適合するソリューションにしばしば挑戦する。
我々は、各クライアントが他のクライアントのモデルからどれだけの恩恵を受けることができるかを適応的に学習するパーソナライズされたクロスサイロFLフレームワークであるAPPLEを提案する。
論文 参考訳(メタデータ) (2021-10-15T22:23:14Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。