Teaching Llama a New Language Through Cross-Lingual Knowledge Transfer
- URL: http://arxiv.org/abs/2404.04042v1
- Date: Fri, 5 Apr 2024 11:52:02 GMT
- Title: Teaching Llama a New Language Through Cross-Lingual Knowledge Transfer
- Authors: Hele-Andra Kuulmets, Taido Purason, Agnes Luhtaru, Mark Fishel,
- Abstract summary: We investigate the impact of combining cross-lingual instruction-tuning with additional monolingual pretraining on Estonian.
We showcase cross-lingual knowledge transfer from high-quality English instructions to Estonian, resulting in improvements in commonsense reasoning.
Our best model, named textscLlammas, represents the first open-source instruction-following LLM for Estonian.
- Score: 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores cost-efficient methods to adapt pretrained Large Language Models (LLMs) to new lower-resource languages, with a specific focus on Estonian. Leveraging the Llama 2 model, we investigate the impact of combining cross-lingual instruction-tuning with additional monolingual pretraining. Our results demonstrate that even a relatively small amount of additional monolingual pretraining followed by cross-lingual instruction-tuning significantly enhances results on Estonian. Furthermore, we showcase cross-lingual knowledge transfer from high-quality English instructions to Estonian, resulting in improvements in commonsense reasoning and multi-turn conversation capabilities. Our best model, named \textsc{Llammas}, represents the first open-source instruction-following LLM for Estonian. Additionally, we publish Alpaca-est, the first general task instruction dataset for Estonia. These contributions mark the initial progress in the direction of developing open-source LLMs for Estonian.
Related papers
- Improving Estonian Text Simplification through Pretrained Language Models and Custom Datasets [0.0]
This study introduces an approach to Estonian text simplification using a neural machine translation model and a fine-tuned large language model (LLaMA)
We benchmarked OpenNMT, a neural machine translation model that frames text simplification as a translation task, and fine-tuned the LLaMA model on our dataset to tailor it specifically for Estonian simplification.
Manual evaluations on the test set show that the LLaMA model consistently outperforms OpenNMT in readability, grammaticality, and meaning preservation.
arXiv Detail & Related papers (2025-01-26T18:10:20Z) - MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing [78.62611800987817]
Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data.
We propose a method called MoE-LPR (Mixture-of-Experts with Language Priors) to enhance the multilingual capability.
arXiv Detail & Related papers (2024-08-21T07:43:49Z) - Adapting LLMs to Hebrew: Unveiling DictaLM 2.0 with Enhanced Vocabulary and Instruction Capabilities [2.047424180164312]
Training large language models (LLMs) in low-resource languages such as Hebrew poses unique challenges.
We introduce DictaLM2.0 and DictaLM2.0-Instruct, two LLMs trained on a substantial corpus of approximately 200 billion tokens in both Hebrew and English.
arXiv Detail & Related papers (2024-07-09T17:51:37Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages.
This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations.
arXiv Detail & Related papers (2024-05-07T21:58:45Z) - Multilingual Pretraining and Instruction Tuning Improve Cross-Lingual Knowledge Alignment, But Only Shallowly [53.04368883943773]
Two approaches are proposed to address this, i.e., multilingual pretraining and multilingual instruction tuning.
We propose CLiKA to assess the cross-lingual knowledge alignment of LLMs in the Performance, Consistency and Conductivity levels.
Results show that while both multilingual pretraining and instruction tuning are beneficial for cross-lingual knowledge alignment, the training strategy needs to be carefully designed.
arXiv Detail & Related papers (2024-04-06T15:25:06Z) - PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning [46.153828074152436]
We propose a pivot language guided generation approach to enhance instruction tuning in lower-resource languages.
It trains the model to first process instructions in the pivot language, and then produce responses in the target language.
Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average.
arXiv Detail & Related papers (2023-11-15T05:28:07Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Learning Multilingual Representation for Natural Language Understanding
with Enhanced Cross-Lingual Supervision [42.724921817550516]
We propose a network named decomposed attention (DA) as a replacement of MA.
The DA consists of an intra-lingual attention (IA) and a cross-lingual attention (CA), which model intralingual and cross-lingual supervisions respectively.
Experiments on various cross-lingual natural language understanding tasks show that the proposed architecture and learning strategy significantly improve the model's cross-lingual transferability.
arXiv Detail & Related papers (2021-06-09T16:12:13Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
We present an effective approach that reuses an LM that is pretrained only on the high-resource language.
The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model.
Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq)
arXiv Detail & Related papers (2020-09-16T11:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.