論文の概要: Large language models as oracles for instantiating ontologies with domain-specific knowledge
- arxiv url: http://arxiv.org/abs/2404.04108v1
- Date: Fri, 5 Apr 2024 14:04:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:55:28.116916
- Title: Large language models as oracles for instantiating ontologies with domain-specific knowledge
- Title(参考訳): ドメイン固有知識を用いたオントロジーのインスタンス化のためのオラクルとしての大規模言語モデル
- Authors: Giovanni Ciatto, Andrea Agiollo, Matteo Magnini, Andrea Omicini,
- Abstract要約: セマンティックなデータでインテリジェントなシステムを構築するには、ドメイン固有の知識を設計し、インスタンス化する必要がある。
結果として得られる経験プロセスは、時間を要する、エラーを起こしやすい、オントロジーデザイナーの個人的な背景に偏っていることが多い。
ドメイン固有の知識を自動的にインスタンス化するための,ドメインに依存しない新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background. Endowing intelligent systems with semantic data commonly requires designing and instantiating ontologies with domain-specific knowledge. Especially in the early phases, those activities are typically performed manually by human experts possibly leveraging on their own experience. The resulting process is therefore time-consuming, error-prone, and often biased by the personal background of the ontology designer. Objective. To mitigate that issue, we propose a novel domain-independent approach to automatically instantiate ontologies with domain-specific knowledge, by leveraging on large language models (LLMs) as oracles. Method. Starting from (i) an initial schema composed by inter-related classes andproperties and (ii) a set of query templates, our method queries the LLM multi- ple times, and generates instances for both classes and properties from its replies. Thus, the ontology is automatically filled with domain-specific knowledge, compliant to the initial schema. As a result, the ontology is quickly and automatically enriched with manifold instances, which experts may consider to keep, adjust, discard, or complement according to their own needs and expertise. Contribution. We formalise our method in general way and instantiate it over various LLMs, as well as on a concrete case study. We report experiments rooted in the nutritional domain where an ontology of food meals and their ingredients is semi-automatically instantiated from scratch, starting from a categorisation of meals and their relationships. There, we analyse the quality of the generated ontologies and compare ontologies attained by exploiting different LLMs. Finally, we provide a SWOT analysis of the proposed method.
- Abstract(参考訳): 背景。
セマンティックなデータでインテリジェントなシステムを構築するには、ドメイン固有の知識でオントロジを設計およびインスタンス化する必要がある。
特に初期の段階では、これらの活動は一般的に人間の専門家が手動で行う。
結果として得られるプロセスは時間がかかり、エラーが発生し、オントロジーデザイナの個人的な背景に偏っていることが多い。
目的。
この問題を軽減するために,大規模言語モデル(LLM)をオラクルとして活用することにより,オントロジーをドメイン固有の知識で自動的にインスタンス化する,ドメインに依存しない新しいアプローチを提案する。
方法。
はじめに
(i)相互関係のクラスとプロパティから構成される初期スキーマ
i) クエリテンプレートのセット,LLMのマルチプルタイムをクエリし,その応答からクラスとプロパティの両方のインスタンスを生成する。
したがって、オントロジーはドメイン固有の知識で自動的に満たされ、初期スキーマに準拠している。
その結果、オントロジーは多様体のインスタンスで迅速かつ自動的に濃縮され、専門家は自身のニーズや専門知識に応じて、維持、調整、破棄、または補完することを検討できる。
貢献。
我々は,本手法を汎用的に定式化し,様々なLCM上でのインスタンス化を行い,具体的な事例研究を行った。
食餌のオントロジーと食材が半自動でスクラッチからインスタンス化される栄養領域に根ざした実験を報告する。
そこで我々は、生成されたオントロジーの質を分析し、異なるLLMを利用して得られるオントロジーを比較した。
最後に,提案手法のSWOT解析について述べる。
関連論文リスト
- End-to-End Ontology Learning with Large Language Models [11.755755139228219]
大規模言語モデル(LLM)は、オントロジー学習の様々なサブタスクを解決するために応用されている。
我々は、オントロジーの分類学的バックボーンをスクラッチから構築する汎用的でスケーラブルな方法であるOLLMによって、このギャップに対処する。
標準的なメトリクスとは対照的に、私たちのメトリクスは、グラフ間のより堅牢な構造的距離測定を定義するためにディープラーニング技術を使用します。
私たちのモデルは、arXivのような新しいドメインに効果的に適用できます。
論文 参考訳(メタデータ) (2024-10-31T02:52:39Z) - Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
大規模言語モデル(LLM)は大規模コーパスで事前訓練されている。
LLMは幻覚、知識の遮断、知識の帰属の欠如に悩まされる。
SMART-SLICはドメイン固有のLLMフレームワークである。
論文 参考訳(メタデータ) (2024-10-03T17:40:55Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Towards Complex Ontology Alignment using Large Language Models [1.3218260503808055]
オントロジーアライメント(オントロジーアライメント)は、異なるラベルとコンテンツ間の関係を検出するWebにおける重要なプロセスである。
近年のLarge Language Models (LLMs) の進歩は,工学的実践の強化に新たな機会をもたらす。
本稿では,LLM技術の複雑なアライメント問題への取り組みについて検討する。
論文 参考訳(メタデータ) (2024-04-16T07:13:22Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
大規模言語モデル(LLM)は、特定のドメインで複雑な知識要求クエリを扱う際に、しばしば困難に直面する。
本稿では、ドメイン固有のテキストソースから関連知識を効果的に抽出し、LLMを強化する新しいアプローチを提案する。
我々は知識マイナー、すなわちLLMinerを訓練し、関連する文書から質問応答対を自律的に抽出する。
論文 参考訳(メタデータ) (2023-11-17T16:09:10Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
本稿では,大規模言語モデルをDOmain固有のKnowledgEで拡張し,実践的アプリケーション,すなわちDOKEの性能を向上させるためのパラダイムを提案する。
このパラダイムはドメイン知識抽出器に依存し,1)タスクに効果的な知識を準備すること,2)特定のサンプルごとに知識を選択すること,3)LLMで理解可能な方法で知識を表現すること,の3つのステップで動作する。
論文 参考訳(メタデータ) (2023-11-16T07:09:38Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing [25.516304052884397]
きめ細かいエンティティタイピング(FET)は、コンテキストに敏感できめ細かいセマンティックタイプでエンティティをテキストに割り当てる。
OntoTypeは、粗いものから細いものまで、型オントロジ構造に従い、複数のPLMをアンサンブルすることで、型候補のセットを生成する。
Ontonotes、FIGER、NYTデータセットに関する我々の実験は、我々の手法が最先端のゼロショットの微細なエンティティタイピング方法よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-05-21T00:32:37Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Knowledge Graph Anchored Information-Extraction for Domain-Specific
Insights [1.6308268213252761]
新しいドメイン内で特定の情報ニーズを満たすためにタスクベースのアプローチを使用します。
美術NLP技術の状態を構成したパイプラインを使用して、インスタンスレベルのセマンティック構造を自動的に抽出する。
論文 参考訳(メタデータ) (2021-04-18T19:28:10Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
本調査では,2015年以降に開発されたニューラルエンティティリンク(EL)システムの包括的記述について報告する。
その目標は、ニューラルエンティティリンクシステムの設計機能を体系化し、それらのパフォーマンスを一般的なベンチマーク上の注目すべき古典的手法と比較することである。
この調査はエンティティリンクの応用に焦点をあて、最近出現した、深い事前訓練されたマスキング言語モデルを強化するユースケースに焦点を当てている。
論文 参考訳(メタデータ) (2020-05-31T18:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。