論文の概要: Generalizable Temperature Nowcasting with Physics-Constrained RNNs for Predictive Maintenance of Wind Turbine Components
- arxiv url: http://arxiv.org/abs/2404.04126v1
- Date: Fri, 5 Apr 2024 14:23:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:45:42.571826
- Title: Generalizable Temperature Nowcasting with Physics-Constrained RNNs for Predictive Maintenance of Wind Turbine Components
- Title(参考訳): 風車部品の予測保守のための物理制約RNNによる一般化可能な温度表示
- Authors: Johannes Exenberger, Matteo Di Salvo, Thomas Hirsch, Franz Wotawa, Gerald Schweiger,
- Abstract要約: 本稿では,風車用ギアボックス軸受の物理制約付き深部学習に基づく予測保守を,部分的なシステム知識で簡便かつ効率的に行う方法について述べる。
その結果、ベースラインニューラルネットワークと比較して、目に見えない環境への一般化性能が改善された。
- 参考スコア(独自算出の注目度): 7.319046306998086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning plays an important role in the operation of current wind energy production systems. One central application is predictive maintenance to increase efficiency and lower electricity costs by reducing downtimes. Integrating physics-based knowledge in neural networks to enforce their physical plausibilty is a promising method to improve current approaches, but incomplete system information often impedes their application in real world scenarios. We describe a simple and efficient way for physics-constrained deep learning-based predictive maintenance for wind turbine gearbox bearings with partial system knowledge. The approach is based on temperature nowcasting constrained by physics, where unknown system coefficients are treated as learnable neural network parameters. Results show improved generalization performance to unseen environments compared to a baseline neural network, which is especially important in low data scenarios often encountered in real-world applications.
- Abstract(参考訳): 機械学習は、現在の風力エネルギー生産システムの運用において重要な役割を担っている。
1つの中心的な応用は、ダウンタイムを減らして効率を高め、電力コストを下げるための予測的メンテナンスである。
ニューラルネットワークにおける物理ベースの知識を統合して物理的なプラウシビリティを強制することは、現在のアプローチを改善するための有望な方法であるが、不完全なシステム情報はしばしば、現実のシナリオにおける彼らの応用を妨げる。
本稿では,風車用ギアボックス軸受の物理制約付き深部学習に基づく予測保守を,部分的なシステム知識で簡便かつ効率的に行う方法について述べる。
この手法は、未知の系係数を学習可能なニューラルネットワークパラメータとして扱う物理によって制約された温度流し込みに基づいている。
その結果、ベースラインニューラルネットワークと比較して一般化性能が向上し、現実世界のアプリケーションでしばしば発生する低データシナリオにおいて特に重要であることがわかった。
関連論文リスト
- ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Gradient-Enhanced Physics-Informed Neural Networks for Power Systems
Operational Support [36.96271320953622]
本稿では,電力系統の動的挙動をリアルタイムに近似する機械学習手法を提案する。
提案するフレームワークは、勾配強化された物理インフォームドニューラルネットワーク(gPINN)に基づいて、電力システムを管理する基礎となる物理法則を符号化する。
論文 参考訳(メタデータ) (2022-06-21T17:56:55Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physics-Informed Neural Networks for AC Optimal Power Flow [0.0]
本稿では,AC-OPFの結果を正確に推定する物理インフォームドニューラルネットワークを初めて紹介する。
物理インフォームドニューラルネットワークは,従来のニューラルネットワークよりも精度が高く,制約違反も少ないことを示す。
論文 参考訳(メタデータ) (2021-10-06T11:44:59Z) - Monotonic Neural Network: combining Deep Learning with Domain Knowledge
for Chiller Plants Energy Optimization [1.4508333270892002]
現実世界の物理システムにおける深層ネットワークトレーニングのための膨大なデータ収集は困難である。
本稿では,非線形モデルを構築するための深層ネットワークの構造と損失設計におけるドメイン知識について考察する。
特に、ほとんどの冷却器のエネルギー消費推定は、入力出力単調問題として物理的に見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T03:01:26Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
強制的変動積分器ネットワーク(FVIN)アーキテクチャにより,エネルギー散逸と外部強制を正確に考慮できることを示す。
これにより、高データ効率のモデルベース制御が可能となり、実際の非保守的なシステムで予測できる。
論文 参考訳(メタデータ) (2021-06-05T21:39:09Z) - Thermodynamic Consistent Neural Networks for Learning Material
Interfacial Mechanics [6.087530833458481]
トラクション・セパレーション関係(TSR)は、開口中の材料界面の力学的挙動を定量的に記述する。
ニューラルネットワークはロードパスとうまく適合するが、物理の法則に従わないことが多い。
本稿では,TSRのデータ駆動モデルを構築するための熱力学的一貫したニューラルネットワーク (TCNN) を提案する。
論文 参考訳(メタデータ) (2020-11-28T17:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。