Smart Contract Languages: a comparative analysis
- URL: http://arxiv.org/abs/2404.04129v2
- Date: Thu, 8 Aug 2024 07:20:09 GMT
- Title: Smart Contract Languages: a comparative analysis
- Authors: Massimo Bartoletti, Lorenzo Benetollo, Michele Bugliesi, Silvia Crafa, Giacomo Dal Sasso, Roberto Pettinau, Andrea Pinna, Mattia Piras, Sabina Rossi, Stefano Salis, Alvise Spanò, Viacheslav Tkachenko, Roberto Tonelli, Roberto Zunino,
- Abstract summary: We examine the smart contract languages used in major blockchain platforms.
Our main focus remains on language-specific features such as usability, programming style, safety and security.
- Score: 1.4066752230258734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts have played a pivotal role in the evolution of blockchains and Decentralized Applications (DApps). As DApps continue to gain widespread adoption, multiple smart contract languages have been and are being made available to developers, each with its distinctive features, strengths, and weaknesses. In this paper, we examine the smart contract languages used in major blockchain platforms, with the goal of providing a comprehensive assessment of their main properties. Our analysis targets the programming languages rather than the underlying architecture: as a result, while we do consider the interplay between language design and blockchain model, our main focus remains on language-specific features such as usability, programming style, safety and security. To conduct our assessment, we propose an original benchmark which encompasses a wide, yet manageable, spectrum of key use cases that cut across all the smart contract languages under examination.
Related papers
- Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training [58.696660064190475]
We find that the existence of code-switching, alternating between different languages within a context, is key to multilingual capabilities.
To better explore the power of code-switching for language alignment during pre-training, we investigate the strategy of synthetic code-switching.
arXiv Detail & Related papers (2025-04-02T15:09:58Z) - A Multi-Agent Framework for Automated Vulnerability Detection and Repair in Solidity and Move Smart Contracts [4.3764649156831235]
This paper presents Smartify, a novel multi-agent framework leveraging Large Language Models (LLMs) to automatically detect and repair vulnerabilities in Solidity and Move smart contracts.
Smartify employs a team of specialized agents working on different specially fine-tuned LLMs to analyze code based on underlying programming concepts and language-specific security principles.
Our results show that Smartify achieves state-of-the-art performance, surpassing existing LLMs and enhancing general-purpose models' capabilities, such as Llama 3.1.
arXiv Detail & Related papers (2025-02-22T20:30:47Z) - Semantic Interoperability on Blockchain by Generating Smart Contracts Based on Knowledge Graphs [0.820828081284034]
In a distributed setting, transmitted data will be structured using standards for semantic interoperability.
We propose the encoding of smart contract logic using a high-level semantic Knowledge Graph.
We show that it is feasible to automatically generate smart contract code based on a semantic KG.
arXiv Detail & Related papers (2024-09-11T13:46:24Z) - Efficacy of Various Large Language Models in Generating Smart Contracts [0.0]
This study analyzes the application of code-generating Large Language Models in the creation of Solidity smart contracts on the immutable.
We also discovered a novel way of generating smart contracts through prompting new strategies.
arXiv Detail & Related papers (2024-06-28T17:31:47Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum
Smart Contracts [0.757843972001219]
Smart contracts are blockchain programs that often handle valuable assets.
To support developers in identifying and eliminating vulnerabilities, methods and tools for the automated analysis have been proposed.
We present SmartBugs 2.0, a modular execution framework for smart contract analysis.
arXiv Detail & Related papers (2023-06-08T09:22:25Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
We show that our models obtain competitive results while being orders of magnitude smaller and faster than current state-of-the-art methods.
Our multilabel strategy is more robust to unseen non-target languages compared to multiclass classification.
arXiv Detail & Related papers (2023-06-02T23:04:19Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
We develop novel code-switching schemes to generate hard negative examples for contrastive learning at all levels.
We develop a label-aware joint model to leverage label semantics for cross-lingual knowledge transfer.
arXiv Detail & Related papers (2022-05-07T13:44:28Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
General-purpose language intelligence evaluation has been a longstanding goal for natural language processing.
We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic.
We propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features.
arXiv Detail & Related papers (2021-12-27T11:08:58Z) - A Bytecode-based Approach for Smart Contract Classification [10.483992071557195]
The number of smart contracts deployed on blockchain platforms is growing exponentially, which makes it difficult for users to find desired services by manual screening.
Current research on smart contract classification focuses on Natural Language Processing (NLP) solutions which are based on contract source code.
This paper proposes a classification model based on features from contract bytecode instead of source code to solve these problems.
arXiv Detail & Related papers (2021-05-31T03:00:29Z) - Languages for Smart and Computable Contracts [0.0]
Smart Contracts use computer technology to automate the performance of aspects of commercial agreements.
How can there be confidence that the computer code is faithful to the intentions of the parties?
Here we provide a perspective on some of the key issues, explore some current research directions, and explain the importance of language design in the development of reliable Smart Contracts.
arXiv Detail & Related papers (2021-04-08T13:32:17Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.