SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum
Smart Contracts
- URL: http://arxiv.org/abs/2306.05057v1
- Date: Thu, 8 Jun 2023 09:22:25 GMT
- Title: SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum
Smart Contracts
- Authors: Monika di Angelo, Thomas Durieux, Jo\~ao F. Ferreira, Gernot Salzer
- Abstract summary: Smart contracts are blockchain programs that often handle valuable assets.
To support developers in identifying and eliminating vulnerabilities, methods and tools for the automated analysis have been proposed.
We present SmartBugs 2.0, a modular execution framework for smart contract analysis.
- Score: 0.757843972001219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts are blockchain programs that often handle valuable assets.
Writing secure smart contracts is far from trivial, and any vulnerability may
lead to significant financial losses. To support developers in identifying and
eliminating vulnerabilities, methods and tools for the automated analysis have
been proposed. However, the lack of commonly accepted benchmark suites and
performance metrics makes it difficult to compare and evaluate such tools.
Moreover, the tools are heterogeneous in their interfaces and reports as well
as their runtime requirements, and installing several tools is time-consuming.
In this paper, we present SmartBugs 2.0, a modular execution framework. It
provides a uniform interface to 19 tools aimed at smart contract analysis and
accepts both Solidity source code and EVM bytecode as input. After describing
its architecture, we highlight the features of the framework. We evaluate the
framework via its reception by the community and illustrate its scalability by
describing its role in a study involving 3.25 million analyses.
Related papers
- SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents.
SPA-Bench offers three key contributions: A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines.
A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption.
arXiv Detail & Related papers (2024-10-19T17:28:48Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Effective Targeted Testing of Smart Contracts [0.0]
Since smart contracts are immutable, their bugs cannot be fixed, which may lead to significant monetary losses.
Our framework, Griffin, tackles this deficiency by employing a targeted symbolic execution technique for generating test data.
This paper discusses how smart contracts differ from legacy software in targeted symbolic execution and how these differences can affect the tool structure.
arXiv Detail & Related papers (2024-07-05T04:38:11Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts.
It provides a list of frequent vulnerabilities and corresponding mitigation solutions.
It evaluates the community most widely used tools by executing and testing them on sample smart contracts.
arXiv Detail & Related papers (2024-03-28T19:36:53Z) - A security framework for Ethereum smart contracts [13.430752634838539]
This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
arXiv Detail & Related papers (2024-02-05T22:14:21Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving real-world tasks.
Our framework comprises three key components: (1) a textittask decomposer that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a textitThoughts-on-Graph (ToG) paradigm that searches the optimal solution path on a pre-built tool graph; and (3) an textitexecution engine with a rich toolbox that interprets the solution path and runs the
arXiv Detail & Related papers (2023-10-26T21:57:21Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
We present a systematic review of the literature on smart contract vulnerabilities and methods.
Specifically, we enumerate and classify smart contract vulnerabilities and methods by the properties they address.
Several patterns about the strengths of different methods emerge through this classification process.
arXiv Detail & Related papers (2023-01-15T12:36:56Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.