論文の概要: Exploring Probabilistic Models for Semi-supervised Learning
- arxiv url: http://arxiv.org/abs/2404.04199v1
- Date: Fri, 5 Apr 2024 16:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:35:54.859342
- Title: Exploring Probabilistic Models for Semi-supervised Learning
- Title(参考訳): 半教師付き学習のための確率モデル探索
- Authors: Jianfeng Wang,
- Abstract要約: この論文は、様々な半教師付き学習(SSL)タスクの理論的基礎と実践的応用を含む高度な確率モデルを研究する。
提案した確率論的手法は、信頼性の高い不確実性推定を迅速に提供し、実アプリケーションにおけるAIシステムの安全性を向上させると同時に、決定論的手法と比較して競合性能を達成することができる。
本研究で提案した手法は,自動運転や医用画像解析などの安全クリティカルな領域において極めて有用であることが実験的に示唆された。
- 参考スコア(独自算出の注目度): 45.54424775758402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis studies advanced probabilistic models, including both their theoretical foundations and practical applications, for different semi-supervised learning (SSL) tasks. The proposed probabilistic methods are able to improve the safety of AI systems in real applications by providing reliable uncertainty estimates quickly, and at the same time, achieve competitive performance compared to their deterministic counterparts. The experimental results indicate that the methods proposed in the thesis have great value in safety-critical areas, such as the autonomous driving or medical imaging analysis domain, and pave the way for the future discovery of highly effective and efficient probabilistic approaches in the SSL sector.
- Abstract(参考訳): この論文は、様々な半教師付き学習(SSL)タスクの理論的基礎と実践的応用を含む高度な確率モデルを研究する。
提案した確率論的手法は、信頼性の高い不確実性推定を迅速に提供し、実アプリケーションにおけるAIシステムの安全性を向上させると同時に、決定論的手法と比較して競合性能を達成することができる。
実験結果から,論文で提案する手法は,自動運転や医用画像解析などの安全クリティカルな領域において大きな価値があり,SSL分野における高効率かつ効率的な確率論的アプローチの発見の道を開くことが示唆された。
関連論文リスト
- Mind the Uncertainty: Risk-Aware and Actively Exploring Model-Based
Reinforcement Learning [26.497229327357935]
トラジェクティブサンプリングを用いたモデルベース強化学習におけるリスク管理手法を提案する。
実験により、不確実性の分離は、不確実かつ安全クリティカルな制御環境において、データ駆動型アプローチとうまく連携するために不可欠であることが示されている。
論文 参考訳(メタデータ) (2023-09-11T16:10:58Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Robust Deep Learning for Autonomous Driving [0.0]
モデル信頼度を確実に推定する新しい基準を導入する:真のクラス確率(TCP)
真のクラスは本質的にテスト時に未知であるため、補助モデルを用いてデータからTCPの基準を学習し、この文脈に適応した特定の学習スキームを導入することを提案する。
本研究は, 既知モデルに基づく新たな不確実性尺度を導入することで, 誤分類と分布外サンプルを共同で検出する課題に対処する。
論文 参考訳(メタデータ) (2022-11-14T22:07:11Z) - Learnability of Competitive Threshold Models [11.005966612053262]
理論的観点から,競合しきい値モデルの学習可能性について検討する。
ニューラルネットワークによって競合しきい値モデルをシームレスにシミュレートする方法を実証する。
論文 参考訳(メタデータ) (2022-05-08T01:11:51Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) は、ディープニューラルネットワークの堅牢性を高める効果的なアプローチである。
我々は、Contrastive Energy-based Models(CEM)と呼ばれる統合確率的枠組みを開発することにより、この現象をデミステレーションする。
本稿では,逆学習法とサンプリング法を開発するための原則的手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T05:33:34Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems [34.945482759378734]
シミュレーションの安全性評価には確率論的アプローチを用いており、危険事象の確率を計算することに関心がある。
探索, 利用, 最適化技術を組み合わせて, 故障モードを見つけ, 発生率を推定する新しいレアイベントシミュレーション手法を開発した。
論文 参考訳(メタデータ) (2020-08-24T17:46:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
適応型安全なパッドディングは、学習プロセス中の安全性を確保しつつ、RL(Reinforcement Learning)に最適な制御ポリシーの合成を強制する。
理論的な保証は、合成されたポリシーの最適性と学習アルゴリズムの収束について利用できる。
論文 参考訳(メタデータ) (2020-02-26T00:01:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。