論文の概要: Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
- arxiv url: http://arxiv.org/abs/2008.10581v3
- Date: Sun, 8 Aug 2021 21:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 09:16:21.221111
- Title: Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
- Title(参考訳): 安全臨界自律システム評価のためのニューラルブリッジサンプリング
- Authors: Aman Sinha, Matthew O'Kelly, Russ Tedrake, John Duchi
- Abstract要約: シミュレーションの安全性評価には確率論的アプローチを用いており、危険事象の確率を計算することに関心がある。
探索, 利用, 最適化技術を組み合わせて, 故障モードを見つけ, 発生率を推定する新しいレアイベントシミュレーション手法を開発した。
- 参考スコア(独自算出の注目度): 34.945482759378734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based methodologies increasingly find applications in
safety-critical domains like autonomous driving and medical robotics. Due to
the rare nature of dangerous events, real-world testing is prohibitively
expensive and unscalable. In this work, we employ a probabilistic approach to
safety evaluation in simulation, where we are concerned with computing the
probability of dangerous events. We develop a novel rare-event simulation
method that combines exploration, exploitation, and optimization techniques to
find failure modes and estimate their rate of occurrence. We provide rigorous
guarantees for the performance of our method in terms of both statistical and
computational efficiency. Finally, we demonstrate the efficacy of our approach
on a variety of scenarios, illustrating its usefulness as a tool for rapid
sensitivity analysis and model comparison that are essential to developing and
testing safety-critical autonomous systems.
- Abstract(参考訳): 学習ベースの方法論は、自律運転や医療ロボティクスといった安全上重要な分野への応用が増えている。
危険な事象の稀な性質のため、実世界のテストは避けられないほど高価でエスカレーションできない。
本研究では,危険事象の確率を計算し,シミュレーションにおける安全性評価の確率論的アプローチを用いる。
探索, 利用, 最適化技術を組み合わせて, 故障モードを見つけ, 発生率を推定する新しいレアイベントシミュレーション手法を開発した。
統計的および計算効率の両面で,本手法の性能を厳格に保証する。
最後に,安全クリティカルな自律システムの開発とテストに不可欠な迅速感度解析とモデル比較のためのツールとしての有用性を示すとともに,様々なシナリオにおける本手法の有効性を実証する。
関連論文リスト
- Exploring Probabilistic Models for Semi-supervised Learning [45.54424775758402]
この論文は、様々な半教師付き学習(SSL)タスクの理論的基礎と実践的応用を含む高度な確率モデルを研究する。
提案した確率論的手法は、信頼性の高い不確実性推定を迅速に提供し、実アプリケーションにおけるAIシステムの安全性を向上させると同時に、決定論的手法と比較して競合性能を達成することができる。
本研究で提案した手法は,自動運転や医用画像解析などの安全クリティカルな領域において極めて有用であることが実験的に示唆された。
論文 参考訳(メタデータ) (2024-04-05T16:13:35Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
フェールサーチは、シミュレーションまたは実世界のテストにおいて、かなりの走行距離をロギングすることで行うことができる。
ASTはマルコフ決定プロセスとして失敗探索の問題を提起する手法である。
ASTフレームワークにクリティカルステートを組み込むことで,安全性違反の増大を伴う障害シナリオが生成されることを示す。
論文 参考訳(メタデータ) (2023-04-01T18:14:41Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Multimodal Safety-Critical Scenarios Generation for Decision-Making
Algorithms Evaluation [23.43175124406634]
既存のニューラルネットワークベースの自律システムは、敵の攻撃に対して脆弱であることが示されている。
意思決定アルゴリズムの評価のためのフローベースマルチモーダル安全クリティカルシナリオジェネレータを提案する。
生成したトラフィックシナリオを用いて6つの強化学習アルゴリズムを評価し,その堅牢性に関する実証的な結論を提供する。
論文 参考訳(メタデータ) (2020-09-16T15:16:43Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。