Exploring Probabilistic Models for Semi-supervised Learning
- URL: http://arxiv.org/abs/2404.04199v1
- Date: Fri, 5 Apr 2024 16:13:35 GMT
- Title: Exploring Probabilistic Models for Semi-supervised Learning
- Authors: Jianfeng Wang,
- Abstract summary: This thesis studies advanced probabilistic models, including both their theoretical foundations and practical applications, for different semi-supervised learning (SSL) tasks.
The proposed probabilistic methods are able to improve the safety of AI systems in real applications by providing reliable uncertainty estimates quickly, and at the same time, achieve competitive performance compared to their deterministic counterparts.
The experimental results indicate that the methods proposed in the thesis have great value in safety-critical areas, such as the autonomous driving or medical imaging analysis domain.
- Score: 45.54424775758402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis studies advanced probabilistic models, including both their theoretical foundations and practical applications, for different semi-supervised learning (SSL) tasks. The proposed probabilistic methods are able to improve the safety of AI systems in real applications by providing reliable uncertainty estimates quickly, and at the same time, achieve competitive performance compared to their deterministic counterparts. The experimental results indicate that the methods proposed in the thesis have great value in safety-critical areas, such as the autonomous driving or medical imaging analysis domain, and pave the way for the future discovery of highly effective and efficient probabilistic approaches in the SSL sector.
Related papers
- Mind the Uncertainty: Risk-Aware and Actively Exploring Model-Based
Reinforcement Learning [26.497229327357935]
We introduce a simple but effective method for managing risk in model-based reinforcement learning with trajectory sampling.
Experiments indicate that the separation of uncertainties is essential to performing well with data-driven approaches in uncertain and safety-critical control environments.
arXiv Detail & Related papers (2023-09-11T16:10:58Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Robust Deep Learning for Autonomous Driving [0.0]
We introduce a new criterion to reliably estimate model confidence: the true class probability ( TCP)
Since the true class is by essence unknown at test time, we propose to learn TCP criterion from data with an auxiliary model, introducing a specific learning scheme adapted to this context.
We tackle the challenge of jointly detecting misclassification and out-of-distributions samples by introducing a new uncertainty measure based on evidential models and defined on the simplex.
arXiv Detail & Related papers (2022-11-14T22:07:11Z) - Learnability of Competitive Threshold Models [11.005966612053262]
We study the learnability of the competitive threshold model from a theoretical perspective.
We demonstrate how competitive threshold models can be seamlessly simulated by artificial neural networks.
arXiv Detail & Related papers (2022-05-08T01:11:51Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z) - Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems [34.945482759378734]
We employ a probabilistic approach to safety evaluation in simulation, where we are concerned with computing the probability of dangerous events.
We develop a novel rare-event simulation method that combines exploration, exploitation, and optimization techniques to find failure modes and estimate their rate of occurrence.
arXiv Detail & Related papers (2020-08-24T17:46:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
An adaptive safe padding forces Reinforcement Learning (RL) to synthesise optimal control policies while ensuring safety during the learning process.
Theoretical guarantees are available on the optimality of the synthesised policies and on the convergence of the learning algorithm.
arXiv Detail & Related papers (2020-02-26T00:01:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.