論文の概要: How Lexical is Bilingual Lexicon Induction?
- arxiv url: http://arxiv.org/abs/2404.04221v1
- Date: Fri, 5 Apr 2024 17:10:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:35:54.838032
- Title: How Lexical is Bilingual Lexicon Induction?
- Title(参考訳): バイリンガル・レキシコン・インダクションはどのようにレキシカルか?
- Authors: Harsh Kohli, Helian Feng, Nicholas Dronen, Calvin McCarter, Sina Moeini, Ali Kebarighotbi,
- Abstract要約: 近年の検索・ランクアプローチに語彙情報を追加することで,語彙誘導が向上すると考えられる。
提案手法の有効性を実証し,全言語対で平均2%改善した。
- 参考スコア(独自算出の注目度): 1.3610643403050855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary machine learning approaches to bilingual lexicon induction (BLI), a model learns a mapping between the embedding spaces of a language pair. Recently, retrieve-and-rank approach to BLI has achieved state of the art results on the task. However, the problem remains challenging in low-resource settings, due to the paucity of data. The task is complicated by factors such as lexical variation across languages. We argue that the incorporation of additional lexical information into the recent retrieve-and-rank approach should improve lexicon induction. We demonstrate the efficacy of our proposed approach on XLING, improving over the previous state of the art by an average of 2\% across all language pairs.
- Abstract(参考訳): 現代の機械学習によるバイリンガル語彙誘導(BLI)のアプローチでは、モデルは言語対の埋め込み空間間のマッピングを学習する。
近年、BLIに対する検索とランクのアプローチは、タスクにおける最先端の結果を得た。
しかし、データの質が悪いため、低リソース設定では依然として問題は解決しない。
このタスクは言語間の語彙変化などの要因によって複雑になる。
近年の検索・ランクアプローチに語彙情報を追加することで,語彙誘導が向上すると考えられる。
提案手法の有効性を実証し,すべての言語対に対して平均2\%向上した。
関連論文リスト
- Semi-Supervised Learning for Bilingual Lexicon Induction [1.8130068086063336]
本稿では,言語に対応する2つの連続語表現の集合を共通空間に整列させてバイリンガル語彙を推論する問題を考察する。
標準ベンチマークの実験では、英語から20言語以上の言語に辞書を推論し、我々のアプローチが既存の技術ベンチマークを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-10T19:27:22Z) - ProMap: Effective Bilingual Lexicon Induction via Language Model
Prompting [22.743097175747575]
バイリンガル誘導(BLI)の新しいアプローチであるProMapを紹介する。
ProMapは、言語モデルの効果的なパッドドプロンプトと、独立して使用する場合に優れたパフォーマンスを実現するシード辞書に依存している。
リッチ・ソース言語とロー・ソース言語の両方で評価すると、ProMapは一貫して最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-10-28T18:33:24Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Word Embedding Transformation for Robust Unsupervised Bilingual Lexicon
Induction [21.782189001319935]
2つの言語の埋め込みの同型性を高めるための変換に基づく手法を提案する。
我々の手法は最先端の手法と比較して、競争力や優れた性能を達成することができる。
論文 参考訳(メタデータ) (2021-05-26T02:09:58Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
本稿では,言語間移動学習の現状を解析する。
XTREMEを10種類の自然言語理解タスクからなるXTREME-Rに拡張する。
論文 参考訳(メタデータ) (2021-04-15T12:26:12Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Bilingual Lexicon Induction via Unsupervised Bitext Construction and
Word Alignment [49.3253280592705]
我々は,bitextマイニングと教師なし単語アライメントを組み合わせた手法により,はるかに高品質な語彙を生成可能であることを示す。
私たちの最終モデルは、BUCC 2020共有タスクの最先端を14 $F_1$ポイント、平均12以上の言語ペアで上回ります。
論文 参考訳(メタデータ) (2021-01-01T03:12:42Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
本稿では,文整合コーパスを利用して頑健な言語間単語表現を実現するCBOW手法のバイリンガル拡張を提案する。
提案手法は,他のすべての手法と比較して,言語間文検索性能を著しく向上させる。
また、ゼロショットのクロスランガル文書分類タスクにおいて、ディープRNN法と同等性を実現する。
論文 参考訳(メタデータ) (2019-12-28T16:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。