論文の概要: Reason from Fallacy: Enhancing Large Language Models' Logical Reasoning through Logical Fallacy Understanding
- arxiv url: http://arxiv.org/abs/2404.04293v1
- Date: Thu, 4 Apr 2024 08:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:37:10.742361
- Title: Reason from Fallacy: Enhancing Large Language Models' Logical Reasoning through Logical Fallacy Understanding
- Title(参考訳): 失敗からの理由:論理的誤り理解を通じて大規模言語モデルの論理的推論を促進する
- Authors: Yanda Li, Dixuan Wang, Jiaqing Liang, Guochao Jiang, Qianyu He, Yanghua Xiao, Deqing Yang,
- Abstract要約: 大規模言語モデル(LLM)は多くの推論タスクにおいて優れたパフォーマンスを示している。
しかしそれでも、論理的推論を含む複雑な推論タスクに苦戦している。
本稿では,WHAT,WHY,HOWの3次元から具体的な5つのタスクを提案する。
- 参考スコア(独自算出の注目度): 40.2816930342597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated good performance in many reasoning tasks, but they still struggle with some complicated reasoning tasks including logical reasoning. One non-negligible reason for LLMs' suboptimal performance on logical reasoning is their overlooking of understanding logical fallacies correctly. To evaluate LLMs' capability of logical fallacy understanding (LFU), we propose five concrete tasks from three cognitive dimensions of WHAT, WHY, and HOW in this paper. Towards these LFU tasks, we have successfully constructed a new dataset LFUD based on GPT-4 accompanied by a little human effort. Our extensive experiments justify that our LFUD can be used not only to evaluate LLMs' LFU capability, but also to fine-tune LLMs to obtain significantly enhanced performance on logical reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多くの推論タスクにおいて優れたパフォーマンスを示してきたが、論理的推論を含む複雑な推論タスクには依然として苦戦している。
LLMの論理的推論における準最適性能の非無視的な理由の1つは、論理的誤りを正しく理解することの見落としである。
本稿では,LLMの論理的誤り理解能力を評価するために,WHAT,WHY,HOWの3次元から5つの具体的タスクを提案する。
これらのLFUタスクに向けて,GPT-4に基づく新しいデータセットLFUDの構築に成功した。
我々のLFUDは, LLMのLFU能力を評価するだけでなく, LLMを微調整することで論理的推論の性能を大幅に向上させることができる。
関連論文リスト
- LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
イベント関係抽出は、綿密な意味的理解と厳密な論理的推論を必要とする課題である。
本稿では,イベント関連論理の理解と適用におけるLLMの能力について,詳細な調査を行う。
本研究により,LLMは論理的に一貫した推論子ではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-13T14:53:06Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。