論文の概要: A Real-time Anomaly Detection Using Convolutional Autoencoder with Dynamic Threshold
- arxiv url: http://arxiv.org/abs/2404.04311v1
- Date: Fri, 5 Apr 2024 11:03:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:37:10.657584
- Title: A Real-time Anomaly Detection Using Convolutional Autoencoder with Dynamic Threshold
- Title(参考訳): 動的閾値を持つ畳み込みオートエンコーダを用いたリアルタイム異常検出
- Authors: Sarit Maitra, Sukanya Kundu, Aishwarya Shankar,
- Abstract要約: この研究は統計と畳み込みオートエンコーダを動的しきい値で組み合わせたハイブリッドモデリング手法を導入する。
このソリューションには、高度な監視システムに接続するリアルタイムのメーターレベルの異常検知システムが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The majority of modern consumer-level energy is generated by real-time smart metering systems. These frequently contain anomalies, which prevent reliable estimates of the series' evolution. This work introduces a hybrid modeling approach combining statistics and a Convolutional Autoencoder with a dynamic threshold. The threshold is determined based on Mahalanobis distance and moving averages. It has been tested using real-life energy consumption data collected from smart metering systems. The solution includes a real-time, meter-level anomaly detection system that connects to an advanced monitoring system. This makes a substantial contribution by detecting unusual data movements and delivering an early warning. Early detection and subsequent troubleshooting can financially benefit organizations and consumers and prevent disasters from occurring.
- Abstract(参考訳): 現代の消費者レベルのエネルギーの大部分は、リアルタイムのスマート計測システムによって生成される。
これらはしばしば異常を含んでおり、シリーズの進化の信頼できる推定を妨げている。
この研究は統計と畳み込みオートエンコーダを動的しきい値で組み合わせたハイブリッドモデリング手法を導入する。
閾値はマハラノビス距離と移動平均に基づいて決定される。
スマート計測システムから収集した実生活エネルギー消費データを用いてテストされている。
このソリューションには、高度な監視システムに接続するリアルタイムのメーターレベルの異常検知システムが含まれている。
これにより、異常なデータの動きを検出し、早期に警告を発することで、かなりの貢献をする。
早期発見とトラブルシューティングは、組織や消費者に経済的に利益をもたらし、災害の発生を防止する。
関連論文リスト
- A Data Mining-Based Dynamical Anomaly Detection Method for Integrating with an Advance Metering System [0.0]
建設事業は総消費電力の30%を消費し、世界の電力関連排出量の26%に寄与している。
本研究は、メーターレベルの異常を検出するための教師なしアプローチと教師なしアプローチの両方について検討する。
このシステムは、メーターレベルの異常をリアルタイムに検出するように設計されている。
論文 参考訳(メタデータ) (2024-05-04T05:26:13Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
本研究では,センサデータに小さな対向摂動のみを加えることで,最先端の異常検出手法の性能を著しく劣化させることを実証した。
いくつかのパブリックデータセットとプライベートデータセットに対して、予測エラー、異常、分類スコアなど、さまざまなスコアを使用する。
敵攻撃に対する異常検出システムの脆弱性を初めて実証した。
論文 参考訳(メタデータ) (2022-08-24T01:55:50Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
スマートマニュファクチャリングシステムの目標は、運用コストを削減し、ダウンタイムをなくすために、失敗を迅速に検出(または予測)することである。
これはしばしば、システムから取得したセンサーの日程内で異常を検出することに起因する。
スマートマニュファクチャリングアプリケーションドメインは、ある種の健全な技術的課題を提起します。
予測的障害分類が達成できることを示し、予測的メンテナンスの道を開く。
論文 参考訳(メタデータ) (2022-06-13T17:51:24Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
本稿では,アテンション機構を備えた変分リカレントオートエンコーダに基づく教師なし異常検出手法を提案する。
スマートメーターの「汚れ」データを用いて、学習中の貢献度を減少させるために、欠落した値とグローバルな異常を事前に検出する。
論文 参考訳(メタデータ) (2022-06-08T19:39:51Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
多くの複雑なシステムでは、システムのための高精度なモデルを開発することは不可能である。
データ駆動型ソリューションは、いくつかの実践的な理由から、産業システムにおいて大きな注目を集めている。
モデルに基づく手法とは異なり、圧力や電圧などの時系列測定を他の情報源と組み合わせることが直接の前進である。
論文 参考訳(メタデータ) (2021-09-28T03:18:03Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。