論文の概要: Faraday: Synthetic Smart Meter Generator for the smart grid
- arxiv url: http://arxiv.org/abs/2404.04314v1
- Date: Fri, 5 Apr 2024 13:18:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 23:37:10.648279
- Title: Faraday: Synthetic Smart Meter Generator for the smart grid
- Title(参考訳): Faraday:スマートグリッドのための合成スマートメータージェネレータ
- Authors: Sheng Chai, Gus Chadney,
- Abstract要約: 本稿では,英国のエネルギー供給業者から3億以上のスマートメーターデータ読取を訓練した変分自動エンコーダ(VAE)モデルを提案する。
将来のエネルギーグリッドをモデル化することに関心のあるグリッドモデラーによる実世界の応用にモデルをどのように利用できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Access to smart meter data is essential to rapid and successful transitions to electrified grids, underpinned by flexibility delivered by low carbon technologies, such as electric vehicles (EV) and heat pumps, and powered by renewable energy. Yet little of this data is available for research and modelling purposes due consumer privacy protections. Whilst many are calling for raw datasets to be unlocked through regulatory changes, we believe this approach will take too long. Synthetic data addresses these challenges directly by overcoming privacy issues. In this paper, we present Faraday, a Variational Auto-encoder (VAE)-based model trained over 300 million smart meter data readings from an energy supplier in the UK, with information such as property type and low carbon technologies (LCTs) ownership. The model produces household-level synthetic load profiles conditioned on these labels, and we compare its outputs against actual substation readings to show how the model can be used for real-world applications by grid modellers interested in modelling energy grids of the future.
- Abstract(参考訳): スマートメーターデータへのアクセスは、電気自動車(EV)やヒートポンプといった低炭素技術によって供給される柔軟性に支えられ、再生可能エネルギーによって駆動される、電化されたグリッドへの迅速かつ成功的な移行に不可欠である。
しかし、消費者プライバシ保護のため、調査やモデリング目的で利用できるデータはほとんどない。
多くの人は、規制の変更によって生のデータセットをアンロックするよう求めているが、このアプローチには時間がかかりすぎると信じている。
合成データは、プライバシー問題を克服することで、これらの課題に対処する。
本稿では,英国におけるエネルギー供給業者から3億以上のスマートメーターデータ読取を訓練した変分オートエンコーダ(VAE)ベースのモデルであるFaradayについて,プロパティタイプや低炭素技術(LCT)の所有権などの情報を提供する。
本モデルは,これらのラベルに条件付き家庭用レベルの合成負荷プロファイルを生成し,その出力を実際のサブステーション読影値と比較し,将来のエネルギーグリッドのモデル化に関心のあるグリッドモデラーによる実世界の応用にどのように利用できるかを示す。
関連論文リスト
- Online Electric Vehicle Charging Detection Based on Memory-based Transformer using Smart Meter Data [19.865702673783154]
電気自動車(EV)の人気は、グリッドオペレーターとインフラに固有の課題をもたらす。
1つの重要な側面は、グリッド内のEV充電の存在を正確に識別する能力である。
ストリーミングスマートメーターからEVの充電を検出するために,リアルタイム(オンライン)に動作可能な新しいメモリベーストランス (M-TR) を提案する。
論文 参考訳(メタデータ) (2024-08-06T03:19:14Z) - Foundation Models for the Electric Power Grid [53.02072064670517]
ファンデーションモデル(FM)がニュースの見出しを支配している。
多様なグリッドデータやトポロジからFMを学習することで、トランスフォーメーション能力が解放されるのではないか、と私たちは主張する。
本稿では,グラフニューラルネットワークに基づく電力グリッドFMの概念,すなわちGridFMについて論じる。
論文 参考訳(メタデータ) (2024-07-12T17:09:47Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。
高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。
また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (2023-12-06T10:46:53Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
本稿では,スマートホームにおけるエネルギー消費に関する時系列データを生成するための,変分自動エンコーダ生成対向ネットワーク(VAE-GAN)手法を提案する。
実世界のスマートホームデータを用いて,Qラーニングに基づくHEMSのオンラインパフォーマンスを検証した。
論文 参考訳(メタデータ) (2023-05-14T22:22:16Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
エージェントベースのシミュレーションは、電気市場のダイナミクスをよりよく理解するために使用される。
エージェントベースのモデルは、機械学習と人工知能を統合する機会を提供する。
我々は、エージェントベースの電気市場モデルに適用された機械学習に焦点を当てた2016年から2021年の間に発行された55の論文をレビューする。
論文 参考訳(メタデータ) (2022-06-05T14:52:26Z) - Defining a synthetic data generator for realistic electric vehicle
charging sessions [6.37470346908743]
電気自動車(EV)充電ステーションは、近年電力網で顕著になっている。
しかし、そのようなEVセッションデータの可用性の制限は、これらの分野でのさらなる発展を妨げる。
我々はEV充電セッションのための合成データ生成装置を開発した。
論文 参考訳(メタデータ) (2022-02-28T11:18:40Z) - EVGen: Adversarial Networks for Learning Electric Vehicle Charging Loads
and Hidden Representations [4.273017002805776]
我々は、電気自動車(EV)の充電セッションと非絡み合い表現を学ぶために、GAN(Generative Adversarial Network)を開発した。
このモデル構造は,非ラベル付き時間・電力パターンのパラメータ化に成功し,これらのパラメータを条件とした合成データを生成することができることを示す。
論文 参考訳(メタデータ) (2021-08-09T00:23:47Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
グラフニューラルネットワーク(GNN)の枠組みに基づくエネルギーシステムのためのデータおよび知識駆動型確率的グラフィカルモデルを提案する。
このモデルは、グリッドトポロジや物理制約の形で、明らかにドメイン知識をファクタリングし、スパーアーキテクチャとはるかに小さなパラメータの寸法性をもたらす。
実世界のスマートグリッドデモプロジェクトから得られた結果は、グリッドの混雑予測や市場入札サービスにどのようにGNNを使用したかを示している。
論文 参考訳(メタデータ) (2021-03-12T13:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。