Diffusion Time-step Curriculum for One Image to 3D Generation
- URL: http://arxiv.org/abs/2404.04562v3
- Date: Fri, 3 May 2024 01:59:57 GMT
- Title: Diffusion Time-step Curriculum for One Image to 3D Generation
- Authors: Xuanyu Yi, Zike Wu, Qingshan Xu, Pan Zhou, Joo-Hwee Lim, Hanwang Zhang,
- Abstract summary: Score distillation sampling(SDS) has been widely adopted to overcome the absence of unseen views in reconstructing 3D objects from a textbfsingle image.
We find out the crux is the overlooked indiscriminate treatment of diffusion time-steps during optimization.
We propose the Diffusion Time-step Curriculum one-image-to-3D pipeline (DTC123), which involves both the teacher and student models collaborating with the time-step curriculum in a coarse-to-fine manner.
- Score: 91.07638345953016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Score distillation sampling~(SDS) has been widely adopted to overcome the absence of unseen views in reconstructing 3D objects from a \textbf{single} image. It leverages pre-trained 2D diffusion models as teacher to guide the reconstruction of student 3D models. Despite their remarkable success, SDS-based methods often encounter geometric artifacts and texture saturation. We find out the crux is the overlooked indiscriminate treatment of diffusion time-steps during optimization: it unreasonably treats the student-teacher knowledge distillation to be equal at all time-steps and thus entangles coarse-grained and fine-grained modeling. Therefore, we propose the Diffusion Time-step Curriculum one-image-to-3D pipeline (DTC123), which involves both the teacher and student models collaborating with the time-step curriculum in a coarse-to-fine manner. Extensive experiments on NeRF4, RealFusion15, GSO and Level50 benchmark demonstrate that DTC123 can produce multi-view consistent, high-quality, and diverse 3D assets. Codes and more generation demos will be released in https://github.com/yxymessi/DTC123.
Related papers
- Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation [45.95218923564575]
We propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view.
Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (6s on an A100 GPU) than SOTA methods.
arXiv Detail & Related papers (2024-11-21T18:21:24Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding [16.50466940644004]
We present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input.
Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss.
arXiv Detail & Related papers (2024-03-15T15:27:58Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with
Variational Score Distillation [48.59711140119368]
We present variational score distillation (VSD) to explain and address issues in text-to-3D generation.
Our overall approach, dubbed ProlificDreamer, can generate high rendering resolution (i.e., $512times512$) and high-fidelity NeRF with rich structure and complex effects.
arXiv Detail & Related papers (2023-05-25T16:19:18Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.