GLCM-Based Feature Combination for Extraction Model Optimization in Object Detection Using Machine Learning
- URL: http://arxiv.org/abs/2404.04578v1
- Date: Sat, 6 Apr 2024 10:16:33 GMT
- Title: GLCM-Based Feature Combination for Extraction Model Optimization in Object Detection Using Machine Learning
- Authors: Florentina Tatrin Kurniati, Daniel HF Manongga, Eko Sediyono, Sri Yulianto Joko Prasetyo, Roy Rudolf Huizen,
- Abstract summary: This research aims to enhance computational efficiency by selecting appropriate features within the GLCM framework.
Two classification models, namely K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM), were employed.
The results indicate that K-NN outperforms SVM in terms of computational complexity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of modern technology, object detection using the Gray Level Co-occurrence Matrix (GLCM) extraction method plays a crucial role in object recognition processes. It finds applications in real-time scenarios such as security surveillance and autonomous vehicle navigation, among others. Computational efficiency becomes a critical factor in achieving real-time object detection. Hence, there is a need for a detection model with low complexity and satisfactory accuracy. This research aims to enhance computational efficiency by selecting appropriate features within the GLCM framework. Two classification models, namely K-Nearest Neighbours (K-NN) and Support Vector Machine (SVM), were employed, with the results indicating that K-Nearest Neighbours (K-NN) outperforms SVM in terms of computational complexity. Specifically, K-NN, when utilizing a combination of Correlation, Energy, and Homogeneity features, achieves a 100% accuracy rate with low complexity. Moreover, when using a combination of Energy and Homogeneity features, K-NN attains an almost perfect accuracy level of 99.9889%, while maintaining low complexity. On the other hand, despite SVM achieving 100% accuracy in certain feature combinations, its high or very high complexity can pose challenges, particularly in real-time applications. Therefore, based on the trade-off between accuracy and complexity, the K-NN model with a combination of Correlation, Energy, and Homogeneity features emerges as a more suitable choice for real-time applications that demand high accuracy and low complexity. This research provides valuable insights for optimizing object detection in various applications requiring both high accuracy and rapid responsiveness.
Related papers
- The object detection model uses combined extraction with KNN and RF classification [0.0]
This study contributes to the field of object detection with a new approach combining GLCM and LBP as feature vectors as well as VE for classification.
System testing used a dataset of 4,437 2D images, the results for KNN accuracy were 92.7% and F1-score 92.5%, while RF performance was lower.
arXiv Detail & Related papers (2024-05-09T05:21:42Z) - Multi-Level GNN Preconditioner for Solving Large Scale Problems [0.0]
Graph Neural Networks (GNNs) are great for learning from unstructured data like meshes but are often limited to small-scale problems.
This paper introduces a novel preconditioner integrating a GNN model within a multi-level Domain Decomposition framework.
The proposed GNN-based preconditioner is used to enhance the efficiency of a Krylov method, resulting in a hybrid solver that can converge with any desired level of accuracy.
arXiv Detail & Related papers (2024-02-13T08:50:14Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Semi-Parametric Inducing Point Networks and Neural Processes [15.948270454686197]
Semi-parametric inducing point networks (SPIN) can query the training set at inference time in a compute-efficient manner.
SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods.
In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.
arXiv Detail & Related papers (2022-05-24T01:42:46Z) - Complexity Measures for Multi-objective Symbolic Regression [2.4087148947930634]
Multi-objective symbolic regression has the advantage that while the accuracy of the learned models is maximized, the complexity is automatically adapted.
We study which complexity measures are most appropriately used in symbolic regression when performing multi- objective optimization with NSGA-II.
arXiv Detail & Related papers (2021-09-01T08:22:41Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Canonical-Correlation-Based Fast Feature Selection for Structural Health Monitoring [4.533223834527272]
This paper proposes a fast feature selection algorithm by efficiently computing the sum of squared canonical correlation coefficients between monitored features and target variables of interest in greedy search.
The proposed algorithm is applied to both synthetic and real datasets to illustrate its advantages in terms of computational speed, general classification and regression tasks, as well as damage-sensitive feature selection tasks.
arXiv Detail & Related papers (2021-06-15T15:55:17Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.