論文の概要: Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology
- arxiv url: http://arxiv.org/abs/2404.04667v1
- Date: Sat, 6 Apr 2024 15:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:09:57.356055
- Title: Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology
- Title(参考訳): オンコロジーにおける臨床診断のための自律型人工知能エージェント
- Authors: Dyke Ferber, Omar S. M. El Nahhas, Georg Wölflein, Isabella C. Wiest, Jan Clusmann, Marie-Elisabeth Leßman, Sebastian Foersch, Jacqueline Lammert, Maximilian Tschochohei, Dirk Jäger, Manuel Salto-Tellez, Nikolaus Schultz, Daniel Truhn, Jakob Nikolas Kather,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
適切なツール(97%)、正しい結論(93.6%)、完全(94%)、個人患者に有用な推奨(89.2%)を提示する能力が高いことを示す。
- 参考スコア(独自算出の注目度): 0.6397820821509177
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal artificial intelligence (AI) systems have the potential to enhance clinical decision-making by interpreting various types of medical data. However, the effectiveness of these models across all medical fields is uncertain. Each discipline presents unique challenges that need to be addressed for optimal performance. This complexity is further increased when attempting to integrate different fields into a single model. Here, we introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine. This engine autonomously coordinates and deploys a set of specialized medical AI tools. These tools include text, radiology and histopathology image interpretation, genomic data processing, web searches, and document retrieval from medical guidelines. We validate our system across a series of clinical oncology scenarios that closely resemble typical patient care workflows. We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases while consistently referencing relevant literature (82.5%) upon instruction. This work provides evidence that LLMs can effectively plan and execute domain-specific models to retrieve or synthesize new information when used as autonomous agents. This enables them to function as specialist, patient-tailored clinical assistants. It also simplifies regulatory compliance by allowing each component tool to be individually validated and approved. We believe, that our work can serve as a proof-of-concept for more advanced LLM-agents in the medical domain.
- Abstract(参考訳): マルチモーダル人工知能(AI)システムは、様々な種類の医療データを解釈することで、臨床上の意思決定を強化する可能性がある。
しかし、全ての医療分野におけるこれらのモデルの有効性は不確実である。
それぞれの規律は、最適なパフォーマンスのために対処する必要があるユニークな課題を提示します。
この複雑さは、異なるフィールドを単一のモデルに統合しようとするとさらに増大する。
本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
これらのツールには、テキスト、放射線学、病理組織像の解釈、ゲノムデータ処理、Web検索、および医療ガイドラインからの文書検索が含まれる。
患者ケアのワークフローによく似た一連の臨床腫瘍学シナリオにまたがって,本システムを検証した。
適切なツール(97%),正しい結論(93.6%),完全(94%),有用(89.2%)のレコメンデーションを提供するとともに,関連する文献(82.5%)を一貫して参照している。
この研究は、LLMが自律エージェントとして使われる際に、新しい情報を検索したり合成したりするためのドメイン固有のモデルを効果的に計画し実行することができるという証拠を提供する。
これにより、専門的かつ患者に合った臨床助手として機能することができる。
また、各コンポーネントツールを個別に検証し、承認することで、規制コンプライアンスを簡素化する。
我々は、我々の研究が、医療領域におけるより高度なLCMエージェントに対する概念実証の役割を果たすと信じている。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning [16.04933261211837]
大規模言語モデル(LLM)とマルチエージェントシステムは、自然言語処理において顕著な能力を示しているが、臨床試験では課題に直面している。
臨床用マルチエージェントシステムである臨床エージェントシステム(ClinicalAgent)について紹介する。
論文 参考訳(メタデータ) (2024-04-23T06:30:53Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - MKA: A Scalable Medical Knowledge Assisted Mechanism for Generative
Models on Medical Conversation Tasks [3.9571320117430866]
このメカニズムは、一般的な神経生成モデルを支援し、医療会話タスクにおけるより良いパフォーマンスを達成することを目的としている。
医療固有の知識グラフは、6種類の医療関連情報を含むメカニズム内に設計されている。
評価結果は,本機構と組み合わせたモデルが,複数の自動評価指標において元の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-05T04:55:54Z) - Towards Generalist Biomedical AI [28.68106423175678]
我々は,汎用バイオメディカルAIシステムの概念実証であるMed-PaLM Multimodal(Med-PaLM M)を紹介する。
Med-PaLM Mは、バイオメディカルデータを柔軟にエンコードし解釈する大規模なマルチモーダル生成モデルである。
モデル生成(およびヒト)胸部X線検査の放射線学的評価を行い, モデルスケールでの性能向上を観察した。
論文 参考訳(メタデータ) (2023-07-26T17:52:22Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
我々は、AI技術を用いて、異なる臨床応用のためにマルチモーダル医療データを融合する文献の合成と分析に重点を置いている。
本報告では, 各種核融合戦略, マルチモーダル核融合を用いた疾患, 臨床成績, 利用可能なマルチモーダル医療データセットを包括的に分析する。
論文 参考訳(メタデータ) (2022-10-23T07:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。