論文の概要: ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning
- arxiv url: http://arxiv.org/abs/2404.14777v2
- Date: Sat, 20 Jul 2024 07:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 01:51:11.407628
- Title: ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning
- Title(参考訳): クリニカルエージェント:大規模言語モデルに基づく推論を用いた治験マルチエージェントシステム
- Authors: Ling Yue, Sixue Xing, Jintai Chen, Tianfan Fu,
- Abstract要約: 大規模言語モデル(LLM)とマルチエージェントシステムは、自然言語処理において顕著な能力を示しているが、臨床試験では課題に直面している。
臨床用マルチエージェントシステムである臨床エージェントシステム(ClinicalAgent)について紹介する。
- 参考スコア(独自算出の注目度): 16.04933261211837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) and multi-agent systems have shown impressive capabilities in natural language tasks but face challenges in clinical trial applications, primarily due to limited access to external knowledge. Recognizing the potential of advanced clinical trial tools that aggregate and predict based on the latest medical data, we propose an integrated solution to enhance their accessibility and utility. We introduce Clinical Agent System (ClinicalAgent), a clinical multi-agent system designed for clinical trial tasks, leveraging GPT-4, multi-agent architectures, LEAST-TO-MOST, and ReAct reasoning technology. This integration not only boosts LLM performance in clinical contexts but also introduces novel functionalities. The proposed method achieves competitive predictive performance in clinical trial outcome prediction (0.7908 PR-AUC), obtaining a 0.3326 improvement over the standard prompt Method. Publicly available code can be found at https://anonymous.4open.science/r/ClinicalAgent-6671.
- Abstract(参考訳): 大規模言語モデル(LLM)とマルチエージェントシステムは、自然言語処理において顕著な能力を示してきたが、主に外部知識へのアクセスが限られているため、臨床試験では課題に直面している。
最新の医療データに基づいて集計・予測する先進的な臨床試験ツールの可能性を認識し,アクセシビリティと有用性を高める統合ソリューションを提案する。
GPT-4, 多エージェントアーキテクチャ, LEAST-TO-MOST, ReAct推論技術を活用した臨床用多エージェントシステムClinicalAgentを紹介する。
この統合は、臨床の文脈でLLMのパフォーマンスを高めるだけでなく、新しい機能も導入する。
提案手法は臨床試験結果予測(0.7908 PR-AUC)における競合予測性能を実現し,標準プロンプト法よりも0.3326改善した。
公開されているコードはhttps://anonymous.4open.science/r/ClinicalAgent-6671にある。
関連論文リスト
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - CliBench: Multifaceted Evaluation of Large Language Models in Clinical Decisions on Diagnoses, Procedures, Lab Tests Orders and Prescriptions [16.310913127940857]
我々はMIMIC IVデータセットから開発された新しいベンチマークであるCliBenchを紹介する。
このベンチマークは、臨床診断におけるLSMの能力を包括的かつ現実的に評価する。
臨床診断の熟練度を評価するため,先進LSMのゼロショット評価を行った。
論文 参考訳(メタデータ) (2024-06-14T11:10:17Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
適切なツール(97%)、正しい結論(93.6%)、完全(94%)、個人患者に有用な推奨(89.2%)を提示する能力が高いことを示す。
論文 参考訳(メタデータ) (2024-04-06T15:50:19Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
大規模言語モデル (LLMs) は, 臨床診断の効率向上への関心が高まっている。
臨床サービス提供におけるLCMの能力を評価するための自動評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-03-25T06:17:54Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale
Clinical Tool Learning [11.8292941452582]
我々は,臨床電卓を様々な臨床状況でキュレートし,応用できる新しい言語エージェントであるAgentMDを紹介した。
AgentMDは、実行可能な機能と構造化ドキュメントを備えた2,164の多様な臨床電卓のコレクションを自動でキュレートした。
手作業による評価では、3つの品質指標に対して80%以上の精度を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:37:19Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Generative Large Language Models are autonomous practitioners of
evidence-based medicine [27.229179922424063]
EBM(エビデンス・ベース・メディカル)は、臨床医学の基礎であり、臨床医が継続的に知識を更新し、患者医療に最良の臨床証拠を適用する必要がある。
EBMの実践は、医学研究の急速な進歩による課題に直面し、臨床医に情報過負荷をもたらす。
人工知能(AI)の統合、特にジェネレーティブ・大型言語モデル(LLM)は、この複雑さを管理するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-01-05T15:09:57Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。