Adapting Multi-objectivized Software Configuration Tuning
- URL: http://arxiv.org/abs/2404.04744v1
- Date: Sat, 6 Apr 2024 22:08:09 GMT
- Title: Adapting Multi-objectivized Software Configuration Tuning
- Authors: Tao Chen, Miqing Li,
- Abstract summary: We propose a weight adaptation method, dubbed AdMMO, for tuning software configuration for better performance.
Our key idea is to adaptively adjust the weight at the right time during tuning, such that a good proportion of the nondominated configurations can be maintained.
- Score: 6.42475226408675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When tuning software configuration for better performance (e.g., latency or throughput), an important issue that many optimizers face is the presence of local optimum traps, compounded by a highly rugged configuration landscape and expensive measurements. To mitigate these issues, a recent effort has shifted to focus on the level of optimization model (called meta multi-objectivization or MMO) instead of designing better optimizers as in traditional methods. This is done by using an auxiliary performance objective, together with the target performance objective, to help the search jump out of local optima. While effective, MMO needs a fixed weight to balance the two objectives-a parameter that has been found to be crucial as there is a large deviation of the performance between the best and the other settings. However, given the variety of configurable software systems, the "sweet spot" of the weight can vary dramatically in different cases and it is not possible to find the right setting without time-consuming trial and error. In this paper, we seek to overcome this significant shortcoming of MMO by proposing a weight adaptation method, dubbed AdMMO. Our key idea is to adaptively adjust the weight at the right time during tuning, such that a good proportion of the nondominated configurations can be maintained. Moreover, we design a partial duplicate retention mechanism to handle the issue of too many duplicate configurations without losing the rich information provided by the "good" duplicates. Experiments on several real-world systems, objectives, and budgets show that, for 71% of the cases, AdMMO is considerably superior to MMO and a wide range of state-of-the-art optimizers while achieving generally better efficiency with the best speedup between 2.2x and 20x.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - mDPO: Conditional Preference Optimization for Multimodal Large Language Models [52.607764280030196]
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment.
Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement.
We propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference.
arXiv Detail & Related papers (2024-06-17T17:59:58Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Parallel Multi-Objective Hyperparameter Optimization with Uniform
Normalization and Bounded Objectives [5.94867851915494]
We propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses these problems.
We increase the efficiency of our approach by imposing constraints on the objective to avoid exploring unnecessary configurations.
Finally, we leverage an approach to parallelize the MoBO which results in a 5x speed-up when using 16x more workers.
arXiv Detail & Related papers (2023-09-26T13:48:04Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - MMO: Meta Multi-Objectivization for Software Configuration Tuning [5.716481441755875]
We propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective.
We show how to effectively use the MMO model without worrying about its weight.
arXiv Detail & Related papers (2021-12-14T11:21:24Z) - Multi-Objectivizing Software Configuration Tuning (for a single
performance concern) [7.285442358509729]
We propose a meta-objectivization model (MMO) that considers an auxiliary performance objective.
Our model is statistically more effective than state-of-the-art single-objective counterparts in overcoming local optima.
arXiv Detail & Related papers (2021-05-31T03:03:53Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
Domain adaptive person Re-Identification (ReID) is challenging owing to the domain gap and shortage of annotations on target scenarios.
This paper proposes a coupling optimization method including the Domain-Invariant Mapping (DIM) method and the Global-Local distance Optimization ( GLO)
GLO is designed to train the ReID model with unsupervised setting on the target domain.
arXiv Detail & Related papers (2020-11-06T14:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.