Parallel Multi-Objective Hyperparameter Optimization with Uniform
Normalization and Bounded Objectives
- URL: http://arxiv.org/abs/2309.14936v1
- Date: Tue, 26 Sep 2023 13:48:04 GMT
- Title: Parallel Multi-Objective Hyperparameter Optimization with Uniform
Normalization and Bounded Objectives
- Authors: Romain Egele, Tyler Chang, Yixuan Sun, Venkatram Vishwanath, Prasanna
Balaprakash
- Abstract summary: We propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses these problems.
We increase the efficiency of our approach by imposing constraints on the objective to avoid exploring unnecessary configurations.
Finally, we leverage an approach to parallelize the MoBO which results in a 5x speed-up when using 16x more workers.
- Score: 5.94867851915494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) methods offer a wide range of configurable
hyperparameters that have a significant influence on their performance. While
accuracy is a commonly used performance objective, in many settings, it is not
sufficient. Optimizing the ML models with respect to multiple objectives such
as accuracy, confidence, fairness, calibration, privacy, latency, and memory
consumption is becoming crucial. To that end, hyperparameter optimization, the
approach to systematically optimize the hyperparameters, which is already
challenging for a single objective, is even more challenging for multiple
objectives. In addition, the differences in objective scales, the failures, and
the presence of outlier values in objectives make the problem even harder. We
propose a multi-objective Bayesian optimization (MoBO) algorithm that addresses
these problems through uniform objective normalization and randomized weights
in scalarization. We increase the efficiency of our approach by imposing
constraints on the objective to avoid exploring unnecessary configurations
(e.g., insufficient accuracy). Finally, we leverage an approach to parallelize
the MoBO which results in a 5x speed-up when using 16x more workers.
Related papers
- Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
Existing methods primarily focus on optimizing LMs for a single reward function, limiting their adaptability to varied objectives.
Here, we propose $textbfmulti-objective decoding (MOD)$, a decoding-time algorithm that outputs the next token from a linear combination of predictions.
We show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.
arXiv Detail & Related papers (2024-06-27T02:46:30Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Bayesian Optimization for Macro Placement [48.55456716632735]
We develop a novel approach to macro placement using Bayesian optimization (BO) over sequence pairs.
BO is a machine learning technique that uses a probabilistic surrogate model and an acquisition function.
We demonstrate our algorithm on the fixed-outline macro placement problem with the half-perimeter wire length objective.
arXiv Detail & Related papers (2022-07-18T06:17:06Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview [10.081056751778712]
We introduce the basics of multi-objective hyperparameter optimization and motivate its usefulness in applied ML.
We provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization.
We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.
arXiv Detail & Related papers (2022-06-15T10:23:19Z) - A Light-Weight Multi-Objective Asynchronous Hyper-Parameter Optimizer [0.0]
We describe a light-weight yet performant system for hyper- parameter optimization.
It approximately minimizes an overall scalar cost function that is obtained by combining multiple performance objectives.
It also supports a trade-off mode, where the goal is to find an appropriate trade-off among objectives by interacting with the user.
arXiv Detail & Related papers (2022-02-15T21:30:38Z) - Many Objective Bayesian Optimization [0.0]
Multi-objective Bayesian optimization (MOBO) is a set of methods that has been successfully applied for the simultaneous optimization of black-boxes.
In particular, MOBO methods have problems when the number of objectives in a multi-objective optimization problem are 3 or more, which is the many objective setting.
We show empirical evidence in a set of toy, synthetic, benchmark and real experiments that GPs predictive distributions of the effectiveness of the metric and the algorithm.
arXiv Detail & Related papers (2021-07-08T21:57:07Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Efficient hyperparameter optimization by way of PAC-Bayes bound
minimization [4.191847852775072]
We present an alternative objective that is equivalent to a Probably Approximately Correct-Bayes (PAC-Bayes) bound on the expected out-of-sample error.
We then devise an efficient gradient-based algorithm to minimize this objective.
arXiv Detail & Related papers (2020-08-14T15:54:51Z) - Efficient Hyperparameter Optimization under Multi-Source Covariate Shift [13.787554178089446]
A typical assumption in supervised machine learning is that the train (source) and test (target) datasets follow completely the same distribution.
In this work, we consider a novel hyperparameter optimization problem under the multi-source covariate shift.
We construct a variance reduced estimator that unbiasedly approximates the target objective with a desirable variance property.
arXiv Detail & Related papers (2020-06-18T15:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.