Cascaded Temporal Updating Network for Efficient Video Super-Resolution
- URL: http://arxiv.org/abs/2408.14244v1
- Date: Mon, 26 Aug 2024 12:59:32 GMT
- Title: Cascaded Temporal Updating Network for Efficient Video Super-Resolution
- Authors: Hao Li, Jiangxin Dong, Jinshan Pan,
- Abstract summary: Key components in recurrent-based VSR networks significantly impact model efficiency.
We propose a cascaded temporal updating network (CTUN) for efficient VSR.
CTUN achieves a favorable trade-off between efficiency and performance compared to existing methods.
- Score: 47.63267159007611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing video super-resolution (VSR) methods generally adopt a recurrent propagation network to extract spatio-temporal information from the entire video sequences, exhibiting impressive performance. However, the key components in recurrent-based VSR networks significantly impact model efficiency, e.g., the alignment module occupies a substantial portion of model parameters, while the bidirectional propagation mechanism significantly amplifies the inference time. Consequently, developing a compact and efficient VSR method that can be deployed on resource-constrained devices, e.g., smartphones, remains challenging. To this end, we propose a cascaded temporal updating network (CTUN) for efficient VSR. We first develop an implicit cascaded alignment module to explore spatio-temporal correspondences from adjacent frames. Moreover, we propose a unidirectional propagation updating network to efficiently explore long-range temporal information, which is crucial for high-quality video reconstruction. Specifically, we develop a simple yet effective hidden updater that can leverage future information to update hidden features during forward propagation, significantly reducing inference time while maintaining performance. Finally, we formulate all of these components into an end-to-end trainable VSR network. Extensive experimental results show that our CTUN achieves a favorable trade-off between efficiency and performance compared to existing methods. Notably, compared with BasicVSR, our method obtains better results while employing only about 30% of the parameters and running time. The source code and pre-trained models will be available at https://github.com/House-Leo/CTUN.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Collaborative Feedback Discriminative Propagation for Video Super-Resolution [66.61201445650323]
Key success of video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information.
Inaccurate alignment usually leads to aligned features with significant artifacts.
propagation modules only propagate the same timestep features forward or backward.
arXiv Detail & Related papers (2024-04-06T22:08:20Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
Most restoration networks are slow, have high computational bottleneck, and can't be used for real-time video enhancement.
In this work, we design an efficient and fast framework to perform real-time enhancement for practical use-cases like live video calls and video streams.
To evaluate our method, we emulate two new datasets that real-world video call and streaming scenarios, and show extensive results on multiple datasets where ReBotNet outperforms existing approaches with lower computations, reduced memory requirements, and faster inference time.
arXiv Detail & Related papers (2023-03-23T17:58:05Z) - Sliding Window Recurrent Network for Efficient Video Super-Resolution [0.0]
Video super-resolution (VSR) is the task of restoring high-resolution frames from a sequence of low-resolution inputs.
We propose a textitSliding Window based Recurrent Network (SWRN) which can be real-time inference while still achieving superior performance.
Our experiment on REDS dataset shows that the proposed method can be well adapted to mobile devices and produce visually pleasant results.
arXiv Detail & Related papers (2022-08-24T15:23:44Z) - Boosting Video Super Resolution with Patch-Based Temporal Redundancy
Optimization [46.833568886576074]
We discuss the influence of the temporal redundancy in the patches with stationary objects and background.
We develop two simple yet effective plug and play methods to improve the performance of existing local and non-local propagation-based VSR algorithms.
arXiv Detail & Related papers (2022-07-18T15:11:18Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
In this work, we propose a novel Residual Local Feature Network (RLFN)
The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation.
In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge.
arXiv Detail & Related papers (2022-05-16T08:46:34Z) - Group-based Bi-Directional Recurrent Wavelet Neural Networks for Video
Super-Resolution [4.9136996406481135]
Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames.
Key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames.
arXiv Detail & Related papers (2021-06-14T06:36:13Z) - Self-Supervised Adaptation for Video Super-Resolution [7.26562478548988]
Single-image super-resolution (SISR) networks can adapt their network parameters to specific input images.
We present a new learning algorithm that allows conventional video super-resolution (VSR) networks to adapt their parameters to test video frames.
arXiv Detail & Related papers (2021-03-18T08:30:24Z) - Temporally Distributed Networks for Fast Video Semantic Segmentation [64.5330491940425]
TDNet is a temporally distributed network designed for fast and accurate video semantic segmentation.
We observe that features extracted from a certain high-level layer of a deep CNN can be approximated by composing features extracted from several shallower sub-networks.
Experiments on Cityscapes, CamVid, and NYUD-v2 demonstrate that our method achieves state-of-the-art accuracy with significantly faster speed and lower latency.
arXiv Detail & Related papers (2020-04-03T22:43:32Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.