Nonadiabatic Field on Quantum Phase Space: A Century after Ehrenfest
- URL: http://arxiv.org/abs/2404.04866v1
- Date: Sun, 7 Apr 2024 08:19:47 GMT
- Title: Nonadiabatic Field on Quantum Phase Space: A Century after Ehrenfest
- Authors: Baihua Wu, Xin He, Jian Liu,
- Abstract summary: Nonadiabatic field (NaF) is based on a generalized exact coordinate-momentum phase space formulation of quantum mechanics.
A few benchmark tests for gas phase and condensed phase systems indicate that NaF offers a practical tool to capture the correct correlation of electronic and nuclear dynamics.
- Score: 19.83226336051656
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nonadiabatic transition dynamics lies at the core of many electron/hole transfer, photoactivated, and vacuum field-coupled processes. About a century after Ehrenfest proposed "Phasenraum" and the Ehrenfest theorem, we report a conceptually novel trajectory-based nonadiabatic dynamics approach, nonadiabatic field (NaF), based on a generalized exact coordinate-momentum phase space formulation of quantum mechanics. It does not employ the conventional Born-Oppenheimer or Ehrenfest trajectory in the nonadiabatic coupling region. Instead, in NaF the equations of motion of the independent trajectory involve a nonadiabatic nuclear force term in addition to an adiabatic nuclear force term of a single electronic state. A few benchmark tests for gas phase and condensed phase systems indicate that NaF offers a practical tool to capture the correct correlation of electronic and nuclear dynamics for processes where the states remain coupled all the time as well as for the asymptotic region where the coupling of electronic states vanishes.
Related papers
- Generalized energy gap law: An open system dynamics approach to non-adiabatic phenomena in molecules [0.0]
Non-adiabatic molecular phenomena govern the fate of virtually all photo-physical and photochemical processes.
A simple and elegant description, the energy gap law, was derived five decades ago.
We revisit and extend this theory to account for crucial aspects such as vibrational relaxation, dephasing, and radiative loss.
arXiv Detail & Related papers (2024-05-14T15:59:58Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Fermionic condensate and the vacuum energy-momentum tensor for planar fermions in homogeneous electric and magnetic fields [0.0]
We consider a massive fermionic quantum field localized on a plane in external constant and homogeneous electric and magnetic fields.
The complete set of solutions to the Dirac equation is presented.
arXiv Detail & Related papers (2023-06-20T09:18:43Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Adiabatic Dynamics and Shortcuts to Adiabaticity: Fundamentals and
Applications [0.0]
This thesis is presented a set of results in adiabatic dynamics (closed and open system) and transitionless quantum driving.
A number of theoretical applications are studied, where some theoretical prediction presented in this thesis are experimentally verified.
arXiv Detail & Related papers (2021-07-25T13:16:17Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.