Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics
- URL: http://arxiv.org/abs/2504.08250v1
- Date: Fri, 11 Apr 2025 04:22:12 GMT
- Title: Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics
- Authors: Baihua Wu, Bingqi Li, Xin He, Xiangsong Cheng, Jiajun Ren, Jian Liu,
- Abstract summary: Nonadiabatic field (NaF) is a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories.<n>NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime.<n>It will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
- Score: 16.057546210555632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable trajectory-based nonadiabatic quantum dynamics methods at the atomic level are critical for understanding many important processes in real systems. The paper reports latest progress of nonadiabatic field (NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising from the nonadiabatic coupling between different electronic states, in addition to the adiabatic force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime, which covers where the relevant electronic states keep coupled in a wide range or all the time and where the bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for discrete electronic-state degrees of freedom. We propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Nonadiabatic Field with Triangle Window Functions on Quantum Phase Space [18.154295245944827]
We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs)
In comparison to the symmetrical quasi-classical (SQC) method, the performance of NaF-TW is significantly better when the bifurcation characteristic of nuclear motion in the region is important.
arXiv Detail & Related papers (2024-04-08T12:04:43Z) - Nonadiabatic Field on Quantum Phase Space: A Century after Ehrenfest [19.83226336051656]
Nonadiabatic field (NaF) is based on a generalized exact coordinate-momentum phase space formulation of quantum mechanics.
A few benchmark tests for gas phase and condensed phase systems indicate that NaF offers a practical tool to capture the correct correlation of electronic and nuclear dynamics.
arXiv Detail & Related papers (2024-04-07T08:19:47Z) - Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions [0.0]
We develop a small training set of many-body wavefunctions through chemical space at mean-field cost.
We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics.
This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain.
arXiv Detail & Related papers (2024-03-18T21:44:46Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - The Vacua of Dipolar Cavity Quantum Electrodynamics [0.0]
We show how strong and long-range vacuum fluctuations modify the states of dipolar matter and induce novel phases with unusual properties.
These general mechanisms can be important for potential applications, ranging from cavity-assisted chemistry to quantum technologies based on ultrastrongly coupled circuit QED systems.
arXiv Detail & Related papers (2020-04-28T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.