論文の概要: CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
- arxiv url: http://arxiv.org/abs/2404.04878v1
- Date: Sun, 7 Apr 2024 08:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:11:06.285946
- Title: CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
- Title(参考訳): CycleINR: Arbitrary-Scale Volume Super-Resolution of Medical DataのためのCycle Implicit Neural Representation
- Authors: Wei Fang, Yuxing Tang, Heng Guo, Mingze Yuan, Tony C. W. Mok, Ke Yan, Jiawen Yao, Xin Chen, Zaiyi Liu, Le Lu, Ling Zhang, Minfeng Xu,
- Abstract要約: CycleINRは、3次元医療データの超高解像度化のための新しい拡張インプリシトニューラルネットワーク表現モデルである。
そこで我々は,Slice-wise Noise Level Inconsistency (SNLI) を新たに導入し,Slice-wise noise Level inconsistency (SNLI) を定量的に評価する。
- 参考スコア(独自算出の注目度): 19.085329423308938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of medical 3D data, such as CT and MRI images, prevalent anisotropic resolution is characterized by high intra-slice but diminished inter-slice resolution. The lowered resolution between adjacent slices poses challenges, hindering optimal viewing experiences and impeding the development of robust downstream analysis algorithms. Various volumetric super-resolution algorithms aim to surmount these challenges, enhancing inter-slice resolution and overall 3D medical imaging quality. However, existing approaches confront inherent challenges: 1) often tailored to specific upsampling factors, lacking flexibility for diverse clinical scenarios; 2) newly generated slices frequently suffer from over-smoothing, degrading fine details, and leading to inter-slice inconsistency. In response, this study presents CycleINR, a novel enhanced Implicit Neural Representation model for 3D medical data volumetric super-resolution. Leveraging the continuity of the learned implicit function, the CycleINR model can achieve results with arbitrary up-sampling rates, eliminating the need for separate training. Additionally, we enhance the grid sampling in CycleINR with a local attention mechanism and mitigate over-smoothing by integrating cycle-consistent loss. We introduce a new metric, Slice-wise Noise Level Inconsistency (SNLI), to quantitatively assess inter-slice noise level inconsistency. The effectiveness of our approach is demonstrated through image quality evaluations on an in-house dataset and a downstream task analysis on the Medical Segmentation Decathlon liver tumor dataset.
- Abstract(参考訳): CTやMRI画像などの医学的3Dデータでは、一般的な異方性分解能は高いスライス内分解能を持つが、スライス間分解能は低下する。
隣接するスライス間の解像度の低下は、最適な視聴体験を妨げるとともに、ロバストな下流分析アルゴリズムの開発を妨げる。
様々なボリューム超解像アルゴリズムは、これらの課題を克服し、スライス間分解能を高め、総合的な3D医療画像品質を向上させることを目的としている。
しかし、既存のアプローチは固有の課題に直面している。
1) 様々な臨床シナリオの柔軟性に欠ける特定のアップサンプリング要因に適合することが多い。
2) 新たに生成したスライスは, 過度なスムース化, 細部劣化, スライス間不整合の原因となることが多い。
そこで本研究では,3次元医用データボリューム超解像のための新しいインプリシットニューラル表現モデルであるCycleINRを提案する。
学習した暗黙関数の連続性を活用することで、CycleINRモデルは任意のアップサンプリングレートで結果を達成することができ、個別のトレーニングの必要性を排除できる。
さらに,CycleINRにおけるグリッドサンプリングを局所的な注意機構で強化し,サイクル一貫性損失を統合することで過度なスムース化を緩和する。
そこで我々は,Slice-wise Noise Level Inconsistency (SNLI) を新たに導入し,Slice-wise noise Level inconsistency (SNLI) を定量的に評価する。
本手法の有効性は, 社内データセットを用いた画像品質評価と, 肝腫瘍データセットを用いた下流タスク解析によって実証された。
関連論文リスト
- Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
ボリューム・メディカル・イメージ・セグメンテーションは、与えられた3次元ボリューム・メディカル・イメージをボクセルレベルの精度で正確に分類することを目的とする医用画像解析の基本的な問題である。
本研究では,3次元医用画像セグメンテーションにおける局所的およびグローバルな依存関係を明示的に捉えることを目的とした,階層型エンコーダデコーダベースの新しいフレームワークを提案する。
提案フレームワークは,局所的なボリュームベースの自己アテンションを利用して局所的な依存関係を高解像度でエンコードし,低解像度の特徴表現でグローバルな依存関係をキャプチャする新しいボリュームミキサを導入する。
論文 参考訳(メタデータ) (2024-10-20T11:08:38Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - SIMPLE: Simultaneous Multi-Plane Self-Supervised Learning for Isotropic MRI Restoration from Anisotropic Data [1.980639720136382]
従来のMRIスキャンでは、技術的制約により異方性データが得られることが多い。
超解像技術は、異方性データから等方性高解像度画像を再構成することでこれらの制限に対処することを目的としている。
異方性データからの等方性MRI復元のための同時多平面自己監督学習手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2024-08-23T13:48:11Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Inlicit Neural Representations (INR) は連続空間関数における相補的視点の2つの異なるコントラストを学習することを提案した。
我々のモデルは、3つのデータセットを用いた実験において、異なるコントラストのペア間で現実的な超解像を提供する。
論文 参考訳(メタデータ) (2023-03-27T10:18:42Z) - CLADE: Cycle Loss Augmented Degradation Enhancement for Unpaired
Super-Resolution of Anisotropic Medical Images [0.06597195879147556]
3次元画像(3D)は医学的応用で人気があるが、厚く低空間分解能のスライスを持つ異方性3Dボリュームはスキャン時間を短縮するために取得されることが多い。
深層学習(DL)は超解像再構成(SRR)により高分解能特徴を復元するソリューションを提供する
腹部MRIおよび腹部CTにおけるCLADEの有用性を示すとともに,低分解能ボリュームよりもCLADE画像の画質が有意に向上した。
論文 参考訳(メタデータ) (2023-03-21T13:19:51Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Joint Semi-supervised 3D Super-Resolution and Segmentation with Mixed
Adversarial Gaussian Domain Adaptation [13.477290490742224]
医用画像の高解像度化は、画像の解像度を向上させることを目的としているが、従来は低解像度データセットの特徴に基づいて訓練されている。
本稿では,画像とそのラベルの同時超解像を行う半教師付きマルチタスク生成対向ネットワーク(Gemini-GAN)を提案する。
提案手法は, 成人1,331人, 成人205人のトランスナショナル多民族集団に対して広く評価された。
論文 参考訳(メタデータ) (2021-07-16T15:42:39Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。