論文の概要: SIMPLE: Simultaneous Multi-Plane Self-Supervised Learning for Isotropic MRI Restoration from Anisotropic Data
- arxiv url: http://arxiv.org/abs/2408.13065v1
- Date: Fri, 23 Aug 2024 13:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:00:47.007768
- Title: SIMPLE: Simultaneous Multi-Plane Self-Supervised Learning for Isotropic MRI Restoration from Anisotropic Data
- Title(参考訳): SIMPLE:異方性データからの等方性MRI再生のための同時多面自己監督学習
- Authors: Rotem Benisty, Yevgenia Shteynman, Moshe Porat, Anat Illivitzki, Moti Freiman,
- Abstract要約: 従来のMRIスキャンでは、技術的制約により異方性データが得られることが多い。
超解像技術は、異方性データから等方性高解像度画像を再構成することでこれらの制限に対処することを目的としている。
異方性データからの等方性MRI復元のための同時多平面自己監督学習手法SIMPLEを導入する。
- 参考スコア(独自算出の注目度): 1.980639720136382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic resonance imaging (MRI) is crucial in diagnosing various abdominal conditions and anomalies. Traditional MRI scans often yield anisotropic data due to technical constraints, resulting in varying resolutions across spatial dimensions, which limits diagnostic accuracy and volumetric analysis. Super-resolution (SR) techniques aim to address these limitations by reconstructing isotropic high-resolution images from anisotropic data. However, current SR methods often rely on indirect mappings and limited training data, focusing mainly on two-dimensional improvements rather than achieving true three-dimensional isotropy. We introduce SIMPLE, a Simultaneous Multi-Plane Self-Supervised Learning approach for isotropic MRI restoration from anisotropic data. Our method leverages existing anisotropic clinical data acquired in different planes, bypassing the need for simulated downsampling processes. By considering the inherent three-dimensional nature of MRI data, SIMPLE ensures realistic isotropic data generation rather than solely improving through-plane slices. This approach flexibility allows it to be extended to multiple contrast types and acquisition methods commonly used in clinical settings. Our experiments show that SIMPLE outperforms state-of-the-art methods both quantitatively using the Kernel Inception Distance (KID) and semi-quantitatively through radiologist evaluations. The generated isotropic volume facilitates more accurate volumetric analysis and 3D reconstructions, promising significant improvements in clinical diagnostic capabilities.
- Abstract(参考訳): MRIは様々な腹部疾患や異常の診断に重要である。
従来のMRIスキャンでは、技術的制約により異方性データが得られることが多く、空間次元によって解像度が変化し、診断精度と体積分析が制限される。
超解像(SR)技術は、異方性データから等方性高解像度画像を再構成することで、これらの制限に対処することを目的としている。
しかし、現在のSR法はしばしば間接写像と限られた訓練データに依存し、真の3次元等方性を達成するのではなく、主に2次元の改善に焦点を当てている。
異方性データからの等方性MRI復元のための同時多平面自己監督学習手法SIMPLEを導入する。
本手法は, 既往の異方性臨床データを異なる平面で取得し, 模擬下水処理の必要性を回避している。
MRIデータの本質的な3次元の性質を考慮することで、SIMPLEは平面スライスを単に改善するのではなく、現実的な等方性データ生成を保証する。
このアプローチの柔軟性は、複数のコントラストタイプや、臨床環境で一般的に使用される取得方法に拡張することができる。
実験の結果、SIMPLEはKernel Inception Distance(KID)と半定量的にラジオロジカル評価により、最先端の手法よりも優れていることがわかった。
生成した等方体積は、より正確なボリューム分析と3D再構成を促進し、臨床診断能力の大幅な改善を約束する。
関連論文リスト
- Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI [4.707353256136099]
我々は,同時マルチパラメトリックqMRIのためのデータ取得と教師なし再構成を含む,革新的なイメージング手法であるSUMMITを提案する。
qMRI再構成のための教師なしアプローチは、様々な医用画像モダリティに適用可能な、新しいゼロショット学習パラダイムも導入する。
論文 参考訳(メタデータ) (2024-10-02T14:13:06Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
論文 参考訳(メタデータ) (2024-09-11T11:12:26Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data [19.085329423308938]
CycleINRは、3次元医療データの超高解像度化のための新しい拡張インプリシトニューラルネットワーク表現モデルである。
そこで我々は,Slice-wise Noise Level Inconsistency (SNLI) を新たに導入し,Slice-wise noise Level inconsistency (SNLI) を定量的に評価する。
論文 参考訳(メタデータ) (2024-04-07T08:48:01Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
高分解能fMRIは脳のメソスケール組織への窓を提供する。
しかし、高い空間分解能はスキャン時間を増加させ、低信号とコントラスト-ノイズ比を補う。
本研究では,fMRIのための深層学習に基づく3次元超解像法を提案する。
論文 参考訳(メタデータ) (2023-11-25T03:33:36Z) - Single-subject Multi-contrast MRI Super-resolution via Implicit Neural
Representations [9.683341998041634]
Inlicit Neural Representations (INR) は連続空間関数における相補的視点の2つの異なるコントラストを学習することを提案した。
我々のモデルは、3つのデータセットを用いた実験において、異なるコントラストのペア間で現実的な超解像を提供する。
論文 参考訳(メタデータ) (2023-03-27T10:18:42Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。