LRNet: Change detection of high-resolution remote sensing imagery via strategy of localization-then-refinement
- URL: http://arxiv.org/abs/2404.04884v1
- Date: Sun, 7 Apr 2024 09:05:04 GMT
- Title: LRNet: Change detection of high-resolution remote sensing imagery via strategy of localization-then-refinement
- Authors: Huan Zhong, Chen Wu, Ziqi Xiao,
- Abstract summary: A novel network based on the localization-then-refinement strategy is proposed in this paper, namely LRNet.
LRNet consists of two stages: localization and refinement.
In the localization stage, a three-branch encoder simultaneously extracts original image features and their differential features for interactive localization of the position of each change area.
In the refinement stage, the decoder, combined with the difference features strengthened by C2A in the localization phase, refines change areas of different sizes, ultimately achieving accurate boundary discrimination of change areas.
- Score: 4.900691840735639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection, as a research hotspot in the field of remote sensing, has witnessed continuous development and progress. However, the discrimination of boundary details remains a significant bottleneck due to the complexity of surrounding elements between change areas and backgrounds. Discriminating the boundaries of large change areas results in misalignment, while connecting boundaries occurs for small change targets. To address the above issues, a novel network based on the localization-then-refinement strategy is proposed in this paper, namely LRNet. LRNet consists of two stages: localization and refinement. In the localization stage, a three-branch encoder simultaneously extracts original image features and their differential features for interactive localization of the position of each change area. To minimize information loss during feature extraction, learnable optimal pooling (LOP) is proposed to replace the widely used max-pooling. Additionally, this process is trainable and contributes to the overall optimization of the network. To effectively interact features from different branches and accurately locate change areas of various sizes, change alignment attention (C2A) and hierarchical change alignment module (HCA) are proposed. In the refinement stage, the localization results from the localization stage are corrected by constraining the change areas and change edges through the edge-area alignment module (E2A). Subsequently, the decoder, combined with the difference features strengthened by C2A in the localization phase, refines change areas of different sizes, ultimately achieving accurate boundary discrimination of change areas. The proposed LRNet outperforms 13 other state-of-the-art methods in terms of comprehensive evaluation metrics and provides the most precise boundary discrimination results on the LEVIR-CD and WHU-CD datasets.
Related papers
- ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Discriminative Radial Domain Adaptation [62.22362756424971]
We propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure.
We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously.
Our method is shown to consistently outperforms state-of-the-art approaches on varied tasks.
arXiv Detail & Related papers (2023-01-01T10:56:31Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context
Propagation in Transformers [60.51925353387151]
We propose a novel module named Local Context Propagation (LCP) to exploit the message passing between neighboring local regions.
We use the overlap points of adjacent local regions as intermediaries, then re-weight the features of these shared points from different local regions before passing them to the next layers.
The proposed method is applicable to different tasks and outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks.
arXiv Detail & Related papers (2022-10-23T15:43:01Z) - Curriculum-style Local-to-global Adaptation for Cross-domain Remote
Sensing Image Segmentation [11.650285884518208]
Cross-domain segmentation for very high resolution (VHR) remote sensing images (RSIs) faces two critical challenges.
Large area land covers with many diverse object categories bring severe local patch-level data distribution deviations.
Different VHR sensor types or dynamically changing modes cause the VHR images to go through intensive data distribution differences even for the same geographical location.
We propose a curriculum-style local-to-global cross-domain adaptation framework for the segmentation of VHR RSIs.
arXiv Detail & Related papers (2022-03-03T06:33:46Z) - Domain Adaptive Semantic Segmentation with Regional Contrastive
Consistency Regularization [19.279884432843822]
We propose a novel and fully end-to-end trainable approach, called regional contrastive consistency regularization (RCCR) for domain adaptive semantic segmentation.
Our core idea is to pull the similar regional features extracted from the same location of different images to be closer, and meanwhile push the features from the different locations of the two images to be separated.
arXiv Detail & Related papers (2021-10-11T11:45:00Z) - Deeply Aligned Adaptation for Cross-domain Object Detection [33.766468227676214]
Cross-domain object detection has recently attracted more and more attention for real-world applications.
We propose an end-to-end solution based on Faster R-CNN, where ground-truth annotations are available for source images but not for target ones.
arXiv Detail & Related papers (2020-04-05T04:41:45Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z) - LRC-Net: Learning Discriminative Features on Point Clouds by Encoding
Local Region Contexts [65.79931333193016]
We present a novel Local-Region-Context Network (LRC-Net) to learn discriminative features on point clouds.
LRC-Net encodes fine-grained contexts inside and among local regions simultaneously.
Results show LRC-Net is competitive with state-of-the-art methods in shape classification and shape segmentation applications.
arXiv Detail & Related papers (2020-03-18T14:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.