Universal energy fluctuations in inelastic scattering processes
- URL: http://arxiv.org/abs/2404.04923v1
- Date: Sun, 7 Apr 2024 11:32:14 GMT
- Title: Universal energy fluctuations in inelastic scattering processes
- Authors: Samuel L. Jacob, John Goold, Gabriel T. Landi, Felipe Barra,
- Abstract summary: We uncover universal relations for the energy fluctuations of a quantum system scattering inelastically with a particle at arbitrary kinetic energies.
We find that energy releasing processes are dominant when the kinetic energy of the particle is comparable to the system energies.
Our work provides a unified view of energy fluctuations when the source driving the system is not macroscopic but rather an auxiliary quantum particle in a scattering process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum scattering is used ubiquitously in both experimental and theoretical physics across a wide range of disciplines, from high-energy physics to mesoscopic physics. In this work, we uncover universal relations for the energy fluctuations of a quantum system scattering inelastically with a particle at arbitrary kinetic energies. In particular, we prove a fluctuation relation describing an asymmetry between energy absorbing and releasing processes which relies on the non-unital nature of the underlying quantum map. This allows us to derive a bound on the average energy exchanged. We find that energy releasing processes are dominant when the kinetic energy of the particle is comparable to the system energies, but are forbidden at very high kinetic energies where well known fluctuation relations are recovered. Our work provides a unified view of energy fluctuations when the source driving the system is not macroscopic but rather an auxiliary quantum particle in a scattering process.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Coherence manipulation in asymmetry and thermodynamics [44.99833362998488]
In the classical regime, thermodynamic state transformations are governed by the free energy.
In the quantum regime, coherence and free energy are two independent resources.
We show that allowing along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily.
arXiv Detail & Related papers (2023-08-24T14:18:19Z) - Phantom energy in the nonlinear response of a quantum many-body scar
state [3.856060991361747]
Quantum many-body scars are notable as nonthermal states that exist at high energies.
Here, we use attractively interacting dysprosium gases to create scar states that are stable enough be driven into a strongly nonlinear regime.
We uncover an emergent nonlinear many-body phenomenon, the effective transmutation of attractive interactions into repulsive interactions.
arXiv Detail & Related papers (2023-08-22T17:59:37Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Energy densities in quantum mechanics [0.0]
We start from a possibly fundamental, relativistic description for a spin-$frac12$ particle: Dirac's equation.
We find a locally conserved non-relativistic energy density that is defined via the Terletsky-Margenau-Hill quasiprobability.
We find a new form of spin-related energy that is finite in the non-relativistic limit, emerges from the rest energy, and is (separately) locally conserved.
arXiv Detail & Related papers (2023-05-09T17:51:50Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Mathematical expressions for quantum fluctuations of energy for
different energy-momentum tensors [0.0]
expressions for the quantum fluctuations of energy density have been derived for the subsystems consisting of hot relativistic gas of particles with spin-$frac12$ and mass $m$.
Our expressions for the fluctuation depend on the form of energy-momentum tensor which in turn depend on the choice of pseudo-gauge.
arXiv Detail & Related papers (2021-09-16T19:54:50Z) - Quantum scattering as a work source [0.0]
We consider a collision between a moving particle and a fixed system, each having internal degrees of freedom.
We identify the regime where the motion of the particle acts as a work source for the joint internal system, leading to energy changes which preserve the entropy.
arXiv Detail & Related papers (2021-08-30T16:43:22Z) - On the Extension of Linear Damping to Quantum Mechanics through
Fractionary Momentum Operators Pt. I [2.5582075465437972]
Three important associated 1 dimensional problems were solved: the free particle case, the infinite potential well, and the harmonic potential.
We conclude that there exists a relationship between fractional kinetic energy and special relativity energies, that remains unclear and needs further exploration.
arXiv Detail & Related papers (2020-07-15T02:12:06Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.