Towards Understanding the Influence of Reward Margin on Preference Model Performance
- URL: http://arxiv.org/abs/2404.04932v1
- Date: Sun, 7 Apr 2024 12:10:04 GMT
- Title: Towards Understanding the Influence of Reward Margin on Preference Model Performance
- Authors: Bowen Qin, Duanyu Feng, Xi Yang,
- Abstract summary: This study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators.
Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models.
- Score: 8.891183078634786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is a widely used framework for the training of language models. However, the process of using RLHF to develop a language model that is well-aligned presents challenges, especially when it comes to optimizing the reward model. Our research has found that existing reward models, when trained using the traditional ranking objective based on human preference data, often struggle to effectively distinguish between responses that are more or less favorable in real-world scenarios. To bridge this gap, our study introduces a novel method to estimate the preference differences without the need for detailed, exhaustive labels from human annotators. Our experimental results provide empirical evidence that incorporating margin values into the training process significantly improves the effectiveness of reward models. This comparative analysis not only demonstrates the superiority of our approach in terms of reward prediction accuracy but also highlights its effectiveness in practical applications.
Related papers
- Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning [12.742158403867002]
Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
arXiv Detail & Related papers (2024-08-19T15:18:30Z) - Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs [25.011675414622392]
This study introduces a novel approach to enhance the reward model's generalization ability against distribution shifts.
We retain the base model's language model head and incorporate a suite of text-generation losses to preserve the hidden states' text-generation capabilities.
Our experimental results demonstrate that the introduced regularization technique markedly improves the accuracy of learned reward models.
arXiv Detail & Related papers (2024-06-14T17:49:59Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
Reinforcement Learning from Human Feedback (RLHF) is a technique that aligns language models closely with human-centric values.
It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective.
This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS)
arXiv Detail & Related papers (2024-01-29T17:43:42Z) - West-of-N: Synthetic Preferences for Self-Improving Reward Models [20.643537269666137]
We present a novel approach to improve reward model quality by generating synthetic preference data.
We find that this approach improves the performance of any reward model, with an effect comparable to the addition of a similar quantity of human preference data.
arXiv Detail & Related papers (2024-01-22T16:24:43Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - The History and Risks of Reinforcement Learning and Human Feedback [0.16843915833103415]
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models easier to use and more effective.
A core piece of the RLHF process is the training and utilization of a model of human preferences that acts as a reward function for optimization.
RLHF reward models are often cited as being central to achieving performance, yet very few descriptors of capabilities, evaluations, training methods, or open-source models exist.
arXiv Detail & Related papers (2023-10-20T15:45:16Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.