Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
- URL: http://arxiv.org/abs/2408.10075v1
- Date: Mon, 19 Aug 2024 15:18:30 GMT
- Title: Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
- Authors: Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, Natasha Jaques,
- Abstract summary: Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
- Score: 12.742158403867002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.
Related papers
- Aligning Visual Contrastive learning models via Preference Optimization [0.9438963196770565]
This paper introduces a novel method for training contrastive learning models using Preference Optimization (PO) to break down complex concepts.
Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task.
In particular, we focus on enhancing model robustness against typographic attacks, commonly seen in contrastive models like CLIP.
We further apply our method to disentangle gender understanding and mitigate gender biases, offering a more nuanced control over these sensitive attributes.
arXiv Detail & Related papers (2024-11-12T08:14:54Z) - RLHF from Heterogeneous Feedback via Personalization and Preference Aggregation [24.374185140811115]
Reinforcement learning from human feedback (RLHF) has been an effective technique for aligning AI systems with human values.
In this paper, we focus on addressing the issues due to the inherent heterogeneity in human preferences, as well as their potential strategic behavior in providing feedback.
We propose two frameworks to address heterogeneous human feedback in principled ways: personalization-based one and aggregation-based one.
arXiv Detail & Related papers (2024-04-30T23:57:23Z) - Provable Multi-Party Reinforcement Learning with Diverse Human Feedback [63.830731470186855]
Reinforcement learning with human feedback (RLHF) is an emerging paradigm to align models with human preferences.
We show how traditional RLHF approaches can fail since learning a single reward function cannot capture and balance the preferences of multiple individuals.
We incorporate meta-learning to learn multiple preferences and adopt different social welfare functions to aggregate the preferences across multiple parties.
arXiv Detail & Related papers (2024-03-08T03:05:11Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO)
We propose a novel learning paradigm called RRHF, which scores sampled responses from different sources via a logarithm of conditional probabilities.
We evaluate RRHF on the Helpful and Harmless dataset, demonstrating comparable alignment performance with PPO by reward model score and human labeling.
arXiv Detail & Related papers (2023-04-11T15:53:40Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.