Inducing a Metal-Insulator Transition through Systematic Alterations of Local Rewriting Rules in a Quantum Graph
- URL: http://arxiv.org/abs/2404.05013v1
- Date: Sun, 7 Apr 2024 16:47:18 GMT
- Title: Inducing a Metal-Insulator Transition through Systematic Alterations of Local Rewriting Rules in a Quantum Graph
- Authors: Richard Berkovits,
- Abstract summary: We show that slight adjustments to the rewriting rule can induce a transition from a localized to an extended quantum phase.
This approach holds promise for numerical investigations and could be implemented in building optical realizations of complex networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Anderson localization transition in quantum graphs has garnered significant recent attention due to its relevance to many-body localization studies. Typically, graphs are constructed using top-down methods. Here, we explore a bottom-up approach, employing a simple local rewriting rule to construct the graph. Through the use of ratio statistics for the energy spectrum and Kullback-Leibler divergence correlations for the eigenstates, numerical analysis demonstrates that slight adjustments to the rewriting rule can induce a transition from a localized to an extended quantum phase. This extended state exhibits non-ergodic behavior, akin to the non-ergodic extended phase observed in the Porter-Rosenzweig model and suggested for many-body localization. Thus, by adapting straightforward local rewriting rules, it becomes feasible to assemble complex graphs from which desired global quantum phases emerge. This approach holds promise for numerical investigations and could be implemented in building optical realizations of complex networks using optical fibers and beam splitters.
Related papers
- Localized states in monitored quantum walks [0.0]
We study localized states in a monitored evolution on a finite graph.
We show how they are distinguished from the delocalized states in terms of the transition probabilities and the mean transition times.
arXiv Detail & Related papers (2024-11-13T21:52:10Z) - Graphical Calculus for Non-Gaussian Quantum States [1.653052113976862]
We provide a graphical method to describe and analyze non-Gaussian quantum states using a hypergraph framework.
We present illustrative examples on the preparation of non-Gaussian states rooted in these graph-based formalisms.
arXiv Detail & Related papers (2024-09-11T14:32:26Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - An analysis of localization transitions using non-parametric
unsupervised learning [0.0]
We show how critical properties can be seen as a geometric transition in the data space generated by the classically encoded configurations of the disordered quantum system.
We estimate the transition point and critical exponents in agreement with the best-known results in the literature.
arXiv Detail & Related papers (2023-11-27T18:13:50Z) - Towards Training Without Depth Limits: Batch Normalization Without
Gradient Explosion [83.90492831583997]
We show that a batch-normalized network can keep the optimal signal propagation properties, but avoid exploding gradients in depth.
We use a Multi-Layer Perceptron (MLP) with linear activations and batch-normalization that provably has bounded depth.
We also design an activation shaping scheme that empirically achieves the same properties for certain non-linear activations.
arXiv Detail & Related papers (2023-10-03T12:35:02Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
We propose a generalization of Transformers towards operating entirely on the product of constant curvature spaces.
We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges.
arXiv Detail & Related papers (2023-09-08T02:44:37Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Reentrant Localized Bulk and Localized-Extended Edge in Quasiperiodic
Non-Hermitian Systems [1.4638370614615002]
The localization is one of the active and fundamental research in topology physics.
We propose a novel systematic method to analyze the localization behaviors for the bulk and the edge, respectively.
arXiv Detail & Related papers (2022-07-01T02:49:23Z) - Classical Shadow Tomography with Locally Scrambled Quantum Dynamics [0.0]
We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-time local unitary ensembles.
We numerically demonstrate our approach for finite-depth local unitary circuits and finite-time local-Hamiltonian generated evolutions.
arXiv Detail & Related papers (2021-07-10T11:34:51Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.