Dynamical localization in 2D topological quantum random walks
- URL: http://arxiv.org/abs/2406.18768v3
- Date: Wed, 12 Feb 2025 23:31:19 GMT
- Title: Dynamical localization in 2D topological quantum random walks
- Authors: D. O. Oriekhov, Guliuxin Jin, Eliska Greplova,
- Abstract summary: We study the dynamical localization of discrete time evolution of topological split-step quantum random walk (QRW) on a single-site defect.<n>By investigating the spectral properties of the discrete-time evolution operators, we show that trapped states have large overlap with the initial uniformly distributed state.<n>We show that mechanism of localization we identified is robust against the influence of disorder.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamical localization of discrete time evolution of topological split-step quantum random walk (QRW) on a single-site defect starting from a uniform distribution. Using analytical and numerical calculations, we determine the high localization probability regions in the parameter space of the quantum walker. These regions contain two or more pairs of trapped states, forming near a lattice defect. By investigating the spectral properties of the discrete-time evolution operators, we show that these trapped states have large overlap with the initial uniformly distributed state, thus offering a simple interpretation of the localization effect. As this localization scheme could be interpreted as a variation of spatial quantum search algorithm, we compare the localization probability and time with other types of two-dimensional quantum walks that do not have topological phases and realize localization time scaling similar to Grover's algorithm. Finally we show that mechanism of localization we identified is robust against the influence of disorder.
Related papers
- Fock-space delocalization and the emergence of the Porter-Thomas distribution from dual-unitary dynamics [0.0]
chaotic dynamics of quantum many-body systems are expected to quickly randomize any structured initial state.
We study the spreading of an initial product state in Hilbert space under dual-unitary dynamics.
arXiv Detail & Related papers (2024-08-05T18:00:03Z) - Hilbert space delocalization under random unitary circuits [0.0]
Unitary dynamics of a quantum system in a selected basis state yields, generically, a state that is a superposition of all the basis states.
This work analyzes the Hilbert space delocalization under dynamics of random quantum circuits.
arXiv Detail & Related papers (2024-04-16T16:59:41Z) - Deterministic Search on Complete Bipartite Graphs by Continuous Time Quantum Walk [0.8057006406834466]
This paper presents a deterministic search algorithm on complete bipartite graphs.
We address the most general case of multiple marked states, so there is a problem of estimating the number of marked states.
We construct a quantum counting algorithm based on the spectrum structure of the search operator.
arXiv Detail & Related papers (2024-04-02T05:09:33Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - A streamlined quantum algorithm for topological data analysis with
exponentially fewer qubits [5.478764356647437]
We present an improved quantum algorithm for computing persistent Betti numbers.
We discuss whether quantum algorithms can achieve an exponential speedup for tasks of practical interest.
arXiv Detail & Related papers (2022-09-26T17:56:11Z) - k-Means Maximum Entropy Exploration [55.81894038654918]
Exploration in continuous spaces with sparse rewards is an open problem in reinforcement learning.
We introduce an artificial curiosity algorithm based on lower bounding an approximation to the entropy of the state visitation distribution.
We show that our approach is both computationally efficient and competitive on benchmarks for exploration in high-dimensional, continuous spaces.
arXiv Detail & Related papers (2022-05-31T09:05:58Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - From locality to irregularity: Introducing local quenches in massive
scalar field theory [68.8204255655161]
We consider the dynamics of excited local states in massive scalar field theory in an arbitrary spacetime dimension.
We identify different regimes of their evolution depending on the values of the field mass and the quench regularization parameter.
We also investigate the local quenches in massive scalar field theory on a cylinder and show that they cause an erratic and chaotic-like evolution of observables.
arXiv Detail & Related papers (2022-05-24T18:00:07Z) - Local Stochastic Factored Gradient Descent for Distributed Quantum State
Tomography [10.623470454359431]
Local Factored Gradient Descent (Local SFGD)
Quantum State Tomography (QST) protocol.
Local SFGD converges locally to a small neighborhood of the global at a linear rate with a constant step size.
arXiv Detail & Related papers (2022-03-22T10:03:16Z) - Quantifying Grover speed-ups beyond asymptotic analysis [0.0]
We consider an approach that combines classical emulation with detailed complexity bounds that include all constants.
We apply our method to some simple quantum speedups of classical algorithms for solving the well-studied MAX-$k$-SAT optimization problem.
This requires rigorous bounds (including all constants) on the expected- and worst-case complexities of two important quantum sub-routines.
arXiv Detail & Related papers (2022-03-09T19:00:00Z) - Exploring Complicated Search Spaces with Interleaving-Free Sampling [127.07551427957362]
In this paper, we build the search algorithm upon a complicated search space with long-distance connections.
We present a simple yet effective algorithm named textbfIF-NAS, where we perform a periodic sampling strategy to construct different sub-networks.
In the proposed search space, IF-NAS outperform both random sampling and previous weight-sharing search algorithms by a significant margin.
arXiv Detail & Related papers (2021-12-05T06:42:48Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Topological delocalization in the completely disordered two-dimensional
quantum walk [0.0]
We investigate the effect of spatial disorder on two-dimensional split-step discrete-time quantum walks with two internal "coin" states.
We find that spatial disorder of the most general type, i.e., position-dependent Haar random coin operators, does not lead to Anderson localization but to a diffusive spread instead.
This is a delocalization, which happens because disorder places the quantum walk to a critical point between different anomalous Floquet-Anderson insulating topological phases.
arXiv Detail & Related papers (2020-05-01T03:57:37Z) - Transition Probabilities in Generalized Quantum Search Hamiltonian
Evolutions [0.0]
We study the computational aspects necessary to calculate the transition probability from a source state to a target state in a continuous time quantum search problem.
We find it is possible to outperform, in terms of minimum search time, the well-known Farhi-Gutmann analog quantum search algorithm.
arXiv Detail & Related papers (2020-02-06T13:16:37Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z) - Quantifying Computational Advantage of Grover's Algorithm with the Trace
Speed [0.0]
We report a close connection between the trace speed and the quantum speed-up in Grover's search algorithm implemented with pure and pseudo-pure states.
For a noiseless algorithm, we find a one-to-one correspondence between the quantum speed-up and the polarization of the pseudo-pure state.
arXiv Detail & Related papers (2020-01-13T19:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.