PlateSegFL: A Privacy-Preserving License Plate Detection Using Federated Segmentation Learning
- URL: http://arxiv.org/abs/2404.05049v1
- Date: Sun, 7 Apr 2024 19:10:02 GMT
- Title: PlateSegFL: A Privacy-Preserving License Plate Detection Using Federated Segmentation Learning
- Authors: Md. Shahriar Rahman Anuvab, Mishkat Sultana, Md. Atif Hossain, Shashwata Das, Suvarthi Chowdhury, Rafeed Rahman, Dibyo Fabian Dofadar, Shahriar Rahman Rana,
- Abstract summary: PlateSegFL implements U-Net-based segmentation along with Federated Learning (FL)
Different computing platforms, such as mobile phones, are able to collaborate on the development of a standard prediction model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic License Plate Recognition (ALPR) is an integral component of an intelligent transport system with extensive applications in secure transportation, vehicle-to-vehicle communication, stolen vehicles detection, traffic violations, and traffic flow management. The existing license plate detection system focuses on one-shot learners or pre-trained models that operate with a geometric bounding box, limiting the model's performance. Furthermore, continuous video data streams uploaded to the central server result in network and complexity issues. To combat this, PlateSegFL was introduced, which implements U-Net-based segmentation along with Federated Learning (FL). U-Net is well-suited for multi-class image segmentation tasks because it can analyze a large number of classes and generate a pixel-level segmentation map for each class. Federated Learning is used to reduce the quantity of data required while safeguarding the user's privacy. Different computing platforms, such as mobile phones, are able to collaborate on the development of a standard prediction model where it makes efficient use of one's time; incorporates more diverse data; delivers projections in real-time; and requires no physical effort from the user; resulting around 95% F1 score.
Related papers
- A Training-Free Framework for Video License Plate Tracking and Recognition with Only One-Shot [25.032455444204466]
OneShotLP is a training-free framework for video-based license plate detection and recognition.
It offers the ability to function effectively without extensive training data and adaptability to various license plate styles.
This highlights the potential of leveraging pre-trained models for diverse real-world applications in intelligent transportation systems.
arXiv Detail & Related papers (2024-08-11T08:42:02Z) - FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
arXiv Detail & Related papers (2024-06-05T20:06:59Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z) - Key Points Estimation and Point Instance Segmentation Approach for Lane
Detection [65.37887088194022]
We propose a traffic line detection method called Point Instance Network (PINet)
The PINet includes several stacked hourglass networks that are trained simultaneously.
The PINet achieves competitive accuracy and false positive on the TuSimple and Culane datasets.
arXiv Detail & Related papers (2020-02-16T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.