FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles
- URL: http://arxiv.org/abs/2406.03611v1
- Date: Wed, 5 Jun 2024 20:06:59 GMT
- Title: FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles
- Authors: Cyprien Quéméneur, Soumaya Cherkaoui,
- Abstract summary: Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
- Score: 5.803236995616553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of Vehicles (IoV) emerges as a pivotal component for autonomous driving and intelligent transportation systems (ITS), by enabling low-latency big data processing in a dense interconnected network that comprises vehicles, infrastructures, pedestrians and the cloud. Autonomous vehicles are heavily reliant on machine learning (ML) and can strongly benefit from the wealth of sensory data generated at the edge, which calls for measures to reconcile model training with preserving the privacy of sensitive user data. Federated learning (FL) stands out as a promising solution to train sophisticated ML models in vehicular networks while protecting the privacy of road users and mitigating communication overhead. This paper examines the federated optimization of the cutting-edge YOLOv7 model to tackle real-time object detection amid data heterogeneity, encompassing unbalancedness, concept drift, and label distribution skews. To this end, we introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments on high-performance computing (HPC) systems, where we safeguard server-client communications using hybrid encryption. Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles. We demonstrate promising results for the applicability of FL in IoV and hope that FedPylot will provide a basis for future research into federated real-time object detection. The source code is available at https://github.com/cyprienquemeneur/fedpylot.
Related papers
- Optimizing Age of Information in Vehicular Edge Computing with Federated Graph Neural Network Multi-Agent Reinforcement Learning [44.17644657738893]
This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints.
We propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL) to optimize AoI across the system.
arXiv Detail & Related papers (2024-07-01T15:37:38Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.