Class Similarity Transition: Decoupling Class Similarities and Imbalance from Generalized Few-shot Segmentation
- URL: http://arxiv.org/abs/2404.05111v1
- Date: Mon, 8 Apr 2024 00:13:05 GMT
- Title: Class Similarity Transition: Decoupling Class Similarities and Imbalance from Generalized Few-shot Segmentation
- Authors: Shihong Wang, Ruixun Liu, Kaiyu Li, Jiawei Jiang, Xiangyong Cao,
- Abstract summary: This paper focuses on the relevance between base and novel classes, and improves Generalized Few-shot (GFSS)
We first propose a similarity transition matrix to guide the learning of novel classes with base class knowledge.
We then leverage the Label-Distribution-Aware Margin (LDAM) loss and Transductive Inference to the GFSS task to address the problem of class imbalance.
- Score: 17.33292771556997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Generalized Few-shot Segmentation (GFSS), a model is trained with a large corpus of base class samples and then adapted on limited samples of novel classes. This paper focuses on the relevance between base and novel classes, and improves GFSS in two aspects: 1) mining the similarity between base and novel classes to promote the learning of novel classes, and 2) mitigating the class imbalance issue caused by the volume difference between the support set and the training set. Specifically, we first propose a similarity transition matrix to guide the learning of novel classes with base class knowledge. Then, we leverage the Label-Distribution-Aware Margin (LDAM) loss and Transductive Inference to the GFSS task to address the problem of class imbalance as well as overfitting the support set. In addition, by extending the probability transition matrix, the proposed method can mitigate the catastrophic forgetting of base classes when learning novel classes. With a simple training phase, our proposed method can be applied to any segmentation network trained on base classes. We validated our methods on the adapted version of OpenEarthMap. Compared to existing GFSS baselines, our method excels them all from 3% to 7% and ranks second in the OpenEarthMap Land Cover Mapping Few-Shot Challenge at the completion of this paper. Code: https://github.com/earth-insights/ClassTrans
Related papers
- Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Semantic Enhanced Few-shot Object Detection [37.715912401900745]
We propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection.
Our method allows each novel class to construct a compact feature space without being confused with similar base classes.
arXiv Detail & Related papers (2024-06-19T12:40:55Z) - Delve into Base-Novel Confusion: Redundancy Exploration for Few-Shot Class-Incremental Learning [8.729669566501103]
Few-shot class-incremental learning aims to acquire knowledge from novel classes with limited samples while retaining information about base classes.
Existing methods usually cause confusion between base and novel classes, classifying novel-class samples into base classes.
We propose Redundancy Decoupling and Integration (RDI) to alleviate this confusion.
arXiv Detail & Related papers (2024-05-08T09:38:16Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
Generalized Few-shot Semantic (GFSS) aims to segment each image pixel into either base classes with abundant training examples or novel classes with only a handful of (e.g., 1-5) training images per class.
We build a cross-attention module that guides the classifier's final prediction using the fused multi-level features.
Our PCN outperforms the state-the-art alternatives by large margins.
arXiv Detail & Related papers (2022-10-15T13:30:12Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
We propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes.
Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms competing approaches.
arXiv Detail & Related papers (2022-10-09T02:32:57Z) - Few-Shot Object Detection via Association and DIscrimination [83.8472428718097]
Few-shot object detection via Association and DIscrimination builds up a discriminative feature space for each novel class with two integral steps.
Experiments on Pascal VOC and MS-COCO datasets demonstrate FADI achieves new SOTA performance, significantly improving the baseline in any shot/split by +18.7.
arXiv Detail & Related papers (2021-11-23T05:04:06Z) - Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot
Learning [76.98364915566292]
A common practice is to train a model on the base set first and then transfer to novel classes through fine-tuning.
We propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model.
We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-02-08T03:27:05Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
We make two contributions to investigate the few-shot classification problem.
We report a simple and effective baseline trained on base classes in the way of traditional supervised learning.
We propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy.
arXiv Detail & Related papers (2020-08-10T11:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.