論文の概要: Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients
- arxiv url: http://arxiv.org/abs/2404.05144v1
- Date: Mon, 8 Apr 2024 01:55:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:43:25.322577
- Title: Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients
- Title(参考訳): LLMによる臨床効率の向上: 心疾患患者に対する放電ノートの作成
- Authors: HyoJe Jung, Yunha Kim, Heejung Choi, Hyeram Seo, Minkyoung Kim, JiYe Han, Gaeun Kee, Seohyun Park, Soyoung Ko, Byeolhee Kim, Suyeon Kim, Tae Joon Jun, Young-Hak Kim,
- Abstract要約: 本研究は、特に心臓病患者において、手動で放電ノートを作成する際の非効率性と不正確性について論じる。
本研究は,大規模言語モデル(LLM)の文書化プロセスの向上能力を評価する。
評価された様々なモデルの中で、Mistral-7Bは正確に放電音を発生させることで識別された。
- 参考スコア(独自算出の注目度): 1.379398224469229
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical documentation, including discharge notes, is crucial for ensuring patient care quality, continuity, and effective medical communication. However, the manual creation of these documents is not only time-consuming but also prone to inconsistencies and potential errors. The automation of this documentation process using artificial intelligence (AI) represents a promising area of innovation in healthcare. This study directly addresses the inefficiencies and inaccuracies in creating discharge notes manually, particularly for cardiac patients, by employing AI techniques, specifically large language model (LLM). Utilizing a substantial dataset from a cardiology center, encompassing wide-ranging medical records and physician assessments, our research evaluates the capability of LLM to enhance the documentation process. Among the various models assessed, Mistral-7B distinguished itself by accurately generating discharge notes that significantly improve both documentation efficiency and the continuity of care for patients. These notes underwent rigorous qualitative evaluation by medical expert, receiving high marks for their clinical relevance, completeness, readability, and contribution to informed decision-making and care planning. Coupled with quantitative analyses, these results confirm Mistral-7B's efficacy in distilling complex medical information into concise, coherent summaries. Overall, our findings illuminate the considerable promise of specialized LLM, such as Mistral-7B, in refining healthcare documentation workflows and advancing patient care. This study lays the groundwork for further integrating advanced AI technologies in healthcare, demonstrating their potential to revolutionize patient documentation and support better care outcomes.
- Abstract(参考訳): 退院記を含む医療文書は、患者のケアの質、継続性、効果的な医療コミュニケーションを確保するために不可欠である。
しかし、これらの文書を手作業で作成することは時間を要するだけでなく、矛盾や潜在的な誤りも生じやすい。
人工知能(AI)を用いたこのドキュメンテーションプロセスの自動化は、医療における将来的なイノベーションの領域である。
本研究は、特に心臓患者に対して、特に大言語モデル(LLM)を応用して、手動で吐出音符を作成する際の非効率性と不正確性を直接的に解決するものである。
本研究は,広い範囲の医療記録と医師評価を含む,心臓科センターからの実質的なデータセットを用いて,LCMのドキュメンテーションプロセスの強化能力を評価する。
評価した各種モデルの中で,Mistral-7Bは,ドキュメンテーション効率と患者のケア継続性の両方を著しく向上させる吐出音を正確に生成することにより,自分自身を区別した。
これらのノートは、医療専門家による厳密な質的評価を受け、臨床関連性、完全性、可読性、および情報的意思決定とケア計画への貢献について高い評価を受けた。
これらの結果は定量的分析と合わせて,Mistral-7Bが複雑な医療情報を簡潔でコヒーレントな要約に蒸留する際の有効性を確認した。
以上の結果から,Mistral-7B などの特殊な LLM が医療ドキュメンテーションワークフローの整備や患者医療の進展に有効である可能性が示唆された。
この研究は、医療に高度なAI技術を統合するための基礎を築き、患者のドキュメンテーションに革命をもたらし、より良いケア結果をサポートする可能性を実証する。
関連論文リスト
- Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini [0.0]
Sporo HealthのAI書式はOpenAIのGPT-4o Miniに対して評価された。
結果から,スポロAIはGPT-4o Miniを一貫して上回り,リコール率,精度,F1スコア全体を達成した。
論文 参考訳(メタデータ) (2024-10-20T22:48:40Z) - A GEN AI Framework for Medical Note Generation [3.7444770630637167]
MediNotesは、医療会話からSOAP(Subjective, Objective, Assessment, Plan)ノートの作成を自動化するために設計された高度な生成AIフレームワークである。
MediNotesはLarge Language Models (LLM)、Retrieval-Augmented Generation (RAG)、Automatic Speech Recognition (ASR)を統合し、テキスト入力と音声入力の両方をリアルタイムで、記録されたオーディオからキャプチャし、処理する。
論文 参考訳(メタデータ) (2024-09-27T23:05:02Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
本稿では,クリニカルドキュメンテーションプロセスの合理化のための生成AI(Artificial Intelligence)の可能性について検討する。
本稿では,自然言語処理 (NLP) と自動音声認識 (ASR) 技術を用いて患者と臨床の相互作用を転写するケーススタディを提案する。
この研究は、時間節約、ドキュメント品質の改善、患者中心のケアの改善など、このアプローチの利点を強調している。
論文 参考訳(メタデータ) (2024-05-28T16:43:41Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
大規模言語モデル(LLM)に基づくエンドツーエンド機械学習ソリューションを提案する。
KG構築プロセスで使用される物質は、疾患、因子、治療、および疾患を経験中に患者と共存する症状である。
提案手法の応用は加齢に伴う黄斑変性に対して実証される。
論文 参考訳(メタデータ) (2023-01-29T15:52:33Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。