Supervised Gradual Machine Learning for Aspect Category Detection
- URL: http://arxiv.org/abs/2404.05245v1
- Date: Mon, 8 Apr 2024 07:21:46 GMT
- Title: Supervised Gradual Machine Learning for Aspect Category Detection
- Authors: Murtadha Ahmed, Qun Chen,
- Abstract summary: Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence.
We propose a novel approach to tackle the ACD task by combining Deep Neural Networks (DNNs) with Gradual Machine Learning (GML) in a supervised setting.
- Score: 0.9857683394266679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence. The state-of-the-art approaches for ACD use Deep Neural Networks (DNNs) to address the problem as a multi-label classification task. However, learning category-specific representations heavily rely on the amount of labeled examples, which may not readily available in real-world scenarios. In this paper, we propose a novel approach to tackle the ACD task by combining DNNs with Gradual Machine Learning (GML) in a supervised setting. we aim to leverage the strength of DNN in semantic relation modeling, which can facilitate effective knowledge transfer between labeled and unlabeled instances during the gradual inference of GML. To achieve this, we first analyze the learned latent space of the DNN to model the relations, i.e., similar or opposite, between instances. We then represent these relations as binary features in a factor graph to efficiently convey knowledge. Finally, we conduct a comparative study of our proposed solution on real benchmark datasets and demonstrate that the GML approach, in collaboration with DNNs for feature extraction, consistently outperforms pure DNN solutions.
Related papers
- Canonical Correlation Guided Deep Neural Network [14.188285111418516]
We present a canonical correlation guided learning framework, which allows to be realized by deep neural networks (CCDNN)
In the proposed method, the optimization formulation is not restricted to maximize correlation, instead we make canonical correlation as a constraint.
To reduce the redundancy induced by correlation, a redundancy filter is designed.
arXiv Detail & Related papers (2024-09-28T16:08:44Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Task-Agnostic Graph Neural Network Evaluation via Adversarial
Collaboration [11.709808788756966]
GraphAC is a principled, task-agnostic, and stable framework for evaluating Graph Neural Network (GNN) research for molecular representation learning.
We introduce a novel objective function: the Competitive Barlow Twins, that allow two GNNs to jointly update themselves from direct competitions against each other.
arXiv Detail & Related papers (2023-01-27T03:33:11Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Verification-Aided Deep Ensemble Selection [4.290931412096984]
Deep neural networks (DNNs) have become the technology of choice for realizing a variety of complex tasks.
Even an imperceptible perturbation to a correctly classified input can lead to misclassification by a DNN.
This paper devises a methodology for identifying ensemble compositions that are less prone to simultaneous errors.
arXiv Detail & Related papers (2022-02-08T14:36:29Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - ATRM: Attention-based Task-level Relation Module for GNN-based Few-shot
Learning [14.464964336101028]
We propose a new relation measure method, namely the attention-based task-level relation module (ATRM)
The proposed module captures the relation representations between nodes by considering the sample-to-task instead of sample-to-sample embedding features.
Experimental results demonstrate that the proposed module is effective for GNN-based few-shot learning.
arXiv Detail & Related papers (2021-01-25T00:53:04Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.