論文の概要: Interpreting Themes from Educational Stories
- arxiv url: http://arxiv.org/abs/2404.05250v1
- Date: Mon, 8 Apr 2024 07:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:13:56.757100
- Title: Interpreting Themes from Educational Stories
- Title(参考訳): 教育物語からテーマを解釈する
- Authors: Yigeng Zhang, Fabio A. González, Thamar Solorio,
- Abstract要約: 本稿では,教育物語の解釈的理解に特化して設計された最初のデータセットを紹介する。
データセットはさまざまなジャンルや文化的な起源にまたがっており、人間に注釈を付けたテーマキーワードを含んでいる。
我々は、物語の主観に向けて解釈的理解の異なる抽象概念の下でNLPタスクを定式化する。
- 参考スコア(独自算出の注目度): 9.608135094187912
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reading comprehension continues to be a crucial research focus in the NLP community. Recent advances in Machine Reading Comprehension (MRC) have mostly centered on literal comprehension, referring to the surface-level understanding of content. In this work, we focus on the next level - interpretive comprehension, with a particular emphasis on inferring the themes of a narrative text. We introduce the first dataset specifically designed for interpretive comprehension of educational narratives, providing corresponding well-edited theme texts. The dataset spans a variety of genres and cultural origins and includes human-annotated theme keywords with varying levels of granularity. We further formulate NLP tasks under different abstractions of interpretive comprehension toward the main idea of a story. After conducting extensive experiments with state-of-the-art methods, we found the task to be both challenging and significant for NLP research. The dataset and source code have been made publicly available to the research community at https://github.com/RiTUAL-UH/EduStory.
- Abstract(参考訳): 読解はNLPコミュニティにおける重要な研究の焦点であり続けている。
機械読解理解(MRC)の最近の進歩は、主にリテラル理解に焦点を当てており、内容の表面レベルでの理解に言及している。
本研究は、物語文の主題を推論することに焦点を当て、解釈的理解という次のレベルに焦点を当てる。
本稿では,教育物語の解釈的理解に特化して設計された最初のデータセットについて紹介する。
データセットはさまざまなジャンルや文化の原点にまたがっていて、人間の注釈付きテーマキーワードに様々なレベルの粒度がある。
さらに、物語の主観に対する解釈的理解の異なる抽象化の下で、NLPタスクを定式化する。
最先端の手法による広範な実験を行った結果,NLP研究において課題であり,重要な課題であることがわかった。
データセットとソースコードは、https://github.com/RiTUAL-UH/EduStory.comで公開されている。
関連論文リスト
- Think from Words(TFW): Initiating Human-Like Cognition in Large Language
Models Through Think from Words for Japanese Text-level Classification [0.0]
TFW(Sink from Words)は、単語レベルで理解プロセスを開始し、テキスト全体を包含するように拡張する。
単語レベル情報付きTFW(TFW Extra)は、単語レベルデータを追加して理解を深める。
LLMのテキスト理解における単語レベルの情報型の影響について検討した。
論文 参考訳(メタデータ) (2023-12-06T12:34:46Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
ディープラーニングは、言語データの複雑な表現を学習できるモデルの開発を可能にすることによって、自然言語処理(NLP)に革命をもたらした。
NLPのディープラーニングモデルは、通常、大量のデータを使用してディープニューラルネットワークをトレーニングし、言語データ内のパターンと関係を学習する。
テキスト要約にディープラーニングを適用することは、テキスト要約タスクを実行するためにディープニューラルネットワークを使用することを指す。
論文 参考訳(メタデータ) (2023-10-13T21:24:37Z) - How learners produce data from text in classifying clickbait [0.0]
本研究は,テキストデータを用いた学習者がドメインの特定の側面を抽出するシナリオにおける理性について考察する。
私たちのゴールは、見出しを「クリックベイト」または「ニュース」と分類する動機づけタスクを用いて、学生がテキストをデータとして理解することについて光を当てることでした。
論文 参考訳(メタデータ) (2023-01-28T20:23:39Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - SCROLLS: Standardized CompaRison Over Long Language Sequences [62.574959194373264]
SCROLLSは長いテキストに対する推論を必要とするタスクのスイートである。
SCROLLSには要約、質問応答、自然言語推論タスクが含まれる。
すべてのデータセットを統一されたテキスト・ツー・テキスト形式で利用可能にし、モデルアーキテクチャと事前学習方法の研究を容易にするために、ライブのリーダーボードをホストします。
論文 参考訳(メタデータ) (2022-01-10T18:47:15Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z) - The Shmoop Corpus: A Dataset of Stories with Loosely Aligned Summaries [72.48439126769627]
個々の章ごとに詳細なマルチパラグラフの要約と組み合わせた231ストーリーのデータセットであるShmoop Corpusを紹介します。
コーパスから、クローズ形式の質問応答や抽象的要約の簡易な形式を含む共通のNLPタスクのセットを構築する。
このコーパスのユニークな構造は、マシンストーリーの理解をより親しみやすいものにするための重要な基盤となると信じている。
論文 参考訳(メタデータ) (2019-12-30T21:03:59Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。