論文の概要: Recent Trends in Linear Text Segmentation: a Survey
- arxiv url: http://arxiv.org/abs/2411.16613v1
- Date: Mon, 25 Nov 2024 17:48:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:39.422828
- Title: Recent Trends in Linear Text Segmentation: a Survey
- Title(参考訳): リニアテキストセグメンテーションの最近の動向:サーベイ
- Authors: Iacopo Ghinassi, Lin Wang, Chris Newell, Matthew Purver,
- Abstract要約: 自然言語処理の分野は、最近、Web上のテキスト、ビデオ、オーディオの急増により、多くの関心を集めている。
本稿では,線形テキストセグメンテーションの現在の進歩を概観し,その課題に対する資源とアプローチの観点から技術の現状を説明する。
- 参考スコア(独自算出の注目度): 10.740243165055743
- License:
- Abstract: Linear Text Segmentation is the task of automatically tagging text documents with topic shifts, i.e. the places in the text where the topics change. A well-established area of research in Natural Language Processing, drawing from well-understood concepts in linguistic and computational linguistic research, the field has recently seen a lot of interest as a result of the surge of text, video, and audio available on the web, which in turn require ways of summarising and categorizing the mole of content for which linear text segmentation is a fundamental step. In this survey, we provide an extensive overview of current advances in linear text segmentation, describing the state of the art in terms of resources and approaches for the task. Finally, we highlight the limitations of available resources and of the task itself, while indicating ways forward based on the most recent literature and under-explored research directions.
- Abstract(参考訳): リニアテキストセグメンテーション(Linear Text Segmentation)は、テキスト文書にトピックシフト(トピックが変化する場所)をタグ付けするタスクである。
言語・計算言語研究においてよく理解された概念から導かれた自然言語処理の研究分野であるこの分野は、最近、Web上で利用可能なテキスト、ビデオ、音声の急増により、多くの関心を集めている。
本稿では,線形テキストセグメンテーションの最近の進歩を概観し,その課題に対する資源とアプローチの観点から,現状を概説する。
最後に、利用可能なリソースとタスク自体の限界を強調し、最新の文献と未調査研究の方向性に基づく今後の方向性を示す。
関連論文リスト
- From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
音声コンテンツに焦点をあてた新しいベンチマークYTSegを導入し、その内容は本質的に非構造的であり、トポロジと構造的にも多様である。
また,高効率な階層分割モデルMiniSegを導入する。
論文 参考訳(メタデータ) (2024-02-27T15:59:37Z) - Visual Text Meets Low-level Vision: A Comprehensive Survey on Visual
Text Processing [4.057550183467041]
視覚テキスト処理の分野は、基本的な生成モデルの出現によって、研究の急増を経験してきた。
この分野での最近の進歩を包括的かつ多面的に分析する。
論文 参考訳(メタデータ) (2024-02-05T15:13:20Z) - Segmenting Messy Text: Detecting Boundaries in Text Derived from
Historical Newspaper Images [0.0]
新聞の結婚発表リストを1つの発表単位に分けるという,困難なテキストセグメンテーションの課題について考察する。
多くの場合、情報は文に構造化されず、隣接するセグメントは互いに位相的に区別されない。
本稿では,このようなテキストをセグメント化するための新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-12-20T05:17:06Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
論文 参考訳(メタデータ) (2022-02-02T16:18:41Z) - Topical Change Detection in Documents via Embeddings of Long Sequences [4.13878392637062]
テキストセグメンテーションのタスクを独立した教師付き予測タスクとして定式化する。
類似セクションの段落を微調整することで、学習した特徴がトピック情報をエンコードすることを示すことができます。
文レベルで操作する従来のアプローチとは異なり、我々は常により広いコンテキストを使用します。
論文 参考訳(メタデータ) (2020-12-07T12:09:37Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
テキスト要約は、原文書の短く凝縮した版を作成することを目的とした研究分野である。
現実世界のアプリケーションでは、ほとんどのデータは平易なテキスト形式ではない。
本稿では,現実のアプリケーションにおけるこれらの新しい要約タスクとアプローチについて調査する。
論文 参考訳(メタデータ) (2020-05-10T14:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。