Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing
- URL: http://arxiv.org/abs/2404.05350v1
- Date: Mon, 8 Apr 2024 09:38:22 GMT
- Title: Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing
- Authors: Chengyan Fu, Wenjie Wang,
- Abstract summary: Randomized smoothing is the primary certified robustness method for accessing the robustness of deep learning models to adversarial perturbations in the l2-norm.
A notable constraint limiting widespread adoption is the necessity to retrain base models entirely from scratch to attain a robust version.
This is because the base model fails to learn the noise-augmented data distribution to give an accurate vote.
Inspired by recent large model training procedures, we explore an alternative way named PEFTSmoothing to adapt the base model to learn the noise-augmented data.
- Score: 6.86204821852287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized smoothing is the primary certified robustness method for accessing the robustness of deep learning models to adversarial perturbations in the l2-norm, by adding isotropic Gaussian noise to the input image and returning the majority votes over the base classifier. Theoretically, it provides a certified norm bound, ensuring predictions of adversarial examples are stable within this bound. A notable constraint limiting widespread adoption is the necessity to retrain base models entirely from scratch to attain a robust version. This is because the base model fails to learn the noise-augmented data distribution to give an accurate vote. One intuitive way to overcome this challenge is to involve a custom-trained denoiser to eliminate the noise. However, this approach is inefficient and sub-optimal. Inspired by recent large model training procedures, we explore an alternative way named PEFTSmoothing to adapt the base model to learn the Gaussian noise-augmented data with Parameter-Efficient Fine-Tuning (PEFT) methods in both white-box and black-box settings. Extensive results demonstrate the effectiveness and efficiency of PEFTSmoothing, which allow us to certify over 98% accuracy for ViT on CIFAR-10, 20% higher than SoTA denoised smoothing, and over 61% accuracy on ImageNet which is 30% higher than CNN-based denoiser and comparable to the Diffusion-based denoiser.
Related papers
- Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness [21.394217131341932]
We introduce a novel certifying adapters framework (CAF) that enables and enhances the certification of adversarial robustness.
CAF achieves improved certified accuracies when compared to methods based on random or denoised smoothing.
An ensemble of adapters enables a single pre-trained feature extractor to defend against a range of noise perturbation scales.
arXiv Detail & Related papers (2024-05-25T03:18:52Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing [9.637143119088426]
We show that a robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement.
We adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models.
The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection.
arXiv Detail & Related papers (2023-01-29T22:05:28Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - (Certified!!) Adversarial Robustness for Free! [116.6052628829344]
We certify 71% accuracy on ImageNet under adversarial perturbations constrained to be within a 2-norm of 0.5.
We obtain these results using only pretrained diffusion models and image classifiers, without requiring any fine tuning or retraining of model parameters.
arXiv Detail & Related papers (2022-06-21T17:27:27Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
Hypergeometric Learning (HGL) is a denoising algorithm for distantly supervised named entity recognition.
HGL takes both noise distribution and instance-level confidence into consideration.
Experiments show that HGL can effectively denoise the weakly-labeled data retrieved from distant supervision.
arXiv Detail & Related papers (2021-06-17T04:01:25Z) - Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and
Accuracy [9.50143683501477]
Insta-RS is a multiple-start search algorithm that assigns customized Gaussian variances to test examples.
Insta-RS Train is a novel two-stage training algorithm that adaptively adjusts and customizes the noise level of each training example.
We show that our method significantly enhances the average certified radius (ACR) as well as the clean data accuracy.
arXiv Detail & Related papers (2021-03-07T19:46:07Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.