論文の概要: Exploring Quantization and Mapping Synergy in Hardware-Aware Deep Neural Network Accelerators
- arxiv url: http://arxiv.org/abs/2404.05368v1
- Date: Mon, 8 Apr 2024 10:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 14:44:37.706805
- Title: Exploring Quantization and Mapping Synergy in Hardware-Aware Deep Neural Network Accelerators
- Title(参考訳): ハードウェア対応ディープニューラルネットワーク加速器における量子化とマッピングシナジーの探索
- Authors: Jan Klhufek, Miroslav Safar, Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina,
- Abstract要約: CNN推論アクセラレータに実装された畳み込みニューラルネットワーク(CNN)のエネルギー効率とメモリフットプリントは多くの要因に依存する。
実装中にリッチな混合量子化スキームを有効にすることで、以前に隠れていたマッピングの空間を開放できることが示される。
量子化重みとアクティベーションと適切なマッピングを利用するCNNは、精度、エネルギ、メモリ要求間のトレードオフを大幅に改善することができる。
- 参考スコア(独自算出の注目度): 0.20971479389679332
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Energy efficiency and memory footprint of a convolutional neural network (CNN) implemented on a CNN inference accelerator depend on many factors, including a weight quantization strategy (i.e., data types and bit-widths) and mapping (i.e., placement and scheduling of DNN elementary operations on hardware units of the accelerator). We show that enabling rich mixed quantization schemes during the implementation can open a previously hidden space of mappings that utilize the hardware resources more effectively. CNNs utilizing quantized weights and activations and suitable mappings can significantly improve trade-offs among the accuracy, energy, and memory requirements compared to less carefully optimized CNN implementations. To find, analyze, and exploit these mappings, we: (i) extend a general-purpose state-of-the-art mapping tool (Timeloop) to support mixed quantization, which is not currently available; (ii) propose an efficient multi-objective optimization algorithm to find the most suitable bit-widths and mapping for each DNN layer executed on the accelerator; and (iii) conduct a detailed experimental evaluation to validate the proposed method. On two CNNs (MobileNetV1 and MobileNetV2) and two accelerators (Eyeriss and Simba) we show that for a given quality metric (such as the accuracy on ImageNet), energy savings are up to 37% without any accuracy drop.
- Abstract(参考訳): CNN推論アクセラレータに実装された畳み込みニューラルネットワーク(CNN)のエネルギー効率とメモリフットプリントは、重量量子化戦略(データタイプとビット幅)やマッピング(アクセラレータのハードウェアユニット上のDNN初等演算の配置とスケジューリング)など、多くの要因に依存する。
実装中にリッチな混合量子化方式を有効にすることで、ハードウェアリソースをより効果的に活用する以前に隠れていたマッピングの空間を開放できることを示す。
量子化重みとアクティベーションと適切なマッピングを利用するCNNは、慎重に最適化されていないCNN実装と比較して、精度、エネルギ、メモリ要求間のトレードオフを著しく改善することができる。
これらのマッピングを見つけ、分析し、活用するには、
(i)現在利用できない混合量子化をサポートするため,汎用的最先端マッピングツール(Timeloop)を拡張した。
2) 加速器上で実行される各DNN層に対して最適なビット幅とマッピングを求めるための効率的な多目的最適化アルゴリズムを提案する。
三 提案手法を検証するための詳細な実験的評価を行う。
2つのCNN (MobileNetV1 と MobileNetV2) と2つのアクセラレータ (Eyeriss と Simba) では、与えられた品質指標 (ImageNet の精度など) に対して、エネルギーの節約は精度低下なしに最大37% であることを示す。
関連論文リスト
- EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - Precision-aware Latency and Energy Balancing on Multi-Accelerator
Platforms for DNN Inference [22.9834921448069]
我々は,チップ上で異なるアクセラレーター間で細粒度マッピングを行うハードウェア認識ツールであるODiMOを提案する。
ODiMOは,手動マッピングと比較して,限界精度低下(-0.53%/-0.32%)で,最大33%/31%のエネルギー/遅延を減少させることを示した。
論文 参考訳(メタデータ) (2023-06-08T09:23:46Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
我々は、Zynq UltraScale + MPSoC ZCU104 FPGA上に実装されたPoT重みを持つハードウェアニューラルネットワークアクセラレーターが、均一量子化バージョンよりも少なくとも1.4x$のエネルギー効率を持つことを示す。
論文 参考訳(メタデータ) (2022-09-30T06:33:40Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
パラメータと演算をビット精度の低いものに量子化することで、ニューラルネットワークの推論にかなりのメモリとエネルギーを節約できる。
本稿では,エッジ計算を対象とする混合精度畳み込みニューラルネットワーク(CNN)の量子化手法を提案する。
論文 参考訳(メタデータ) (2022-06-15T18:11:37Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Optimisation of a Siamese Neural Network for Real-Time Energy Efficient
Object Tracking [0.0]
組込み視覚システムのためのSiameseニューラルネットワークを用いた視覚物体追跡の最適化について述べる。
提案手法は,高解像度ビデオストリームに対して,リアルタイムに動作するものと推定された。
論文 参考訳(メタデータ) (2020-07-01T13:49:56Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z) - Switchable Precision Neural Networks [35.2752928147013]
複数の量子化レベルで動作可能な共有ネットワークをトレーニングするために,スイッチブル精密ニューラルネットワーク(SP-Nets)を提案する。
実行時に、ネットワークは、インスタントメモリ、レイテンシ、消費電力、精度要求に応じて、オンザフライで精度を調整することができる。
論文 参考訳(メタデータ) (2020-02-07T14:43:44Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。