論文の概要: Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point Locations
- arxiv url: http://arxiv.org/abs/2404.05415v2
- Date: Mon, 15 Apr 2024 00:45:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 19:41:10.312161
- Title: Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point Locations
- Title(参考訳): 大規模言語モデルを用いた関係抽出 : 接点位置のケーススタディ
- Authors: Yiming Li, Xueqing Peng, Jianfu Li, Xu Zuo, Suyuan Peng, Donghong Pei, Cui Tao, Hua Xu, Na Hong,
- Abstract要約: GPT (Generative Pre-trained Transformers) は、キューポイント位置に関連する関係を抽出する重要な機会を提供する。
本研究では,GPTと従来の深層学習モデル(LSTM)とバイオメディカルテキストマイニング用トランスフォーマー(BioBERT)の双方向表現を比較した。
微調整のGPT-3.5は、全ての関係型でF1スコアの他のモデルよりも一貫して優れていた。
- 参考スコア(独自算出の注目度): 12.632106431145047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In acupuncture therapy, the accurate location of acupoints is essential for its effectiveness. The advanced language understanding capabilities of large language models (LLMs) like Generative Pre-trained Transformers (GPT) present a significant opportunity for extracting relations related to acupoint locations from textual knowledge sources. This study aims to compare the performance of GPT with traditional deep learning models (Long Short-Term Memory (LSTM) and Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT)) in extracting acupoint-related location relations and assess the impact of pretraining and fine-tuning on GPT's performance. We utilized the World Health Organization Standard Acupuncture Point Locations in the Western Pacific Region (WHO Standard) as our corpus, which consists of descriptions of 361 acupoints. Five types of relations ('direction_of,' 'distance_of,' 'part_of,' 'near_acupoint,' and 'located_near') (n= 3,174) between acupoints were annotated. Five models were compared: BioBERT, LSTM, pre-trained GPT-3.5, fine-tuned GPT-3.5, as well as pre-trained GPT-4. Performance metrics included micro-average exact match precision, recall, and F1 scores. Our results demonstrate that fine-tuned GPT-3.5 consistently outperformed other models in F1 scores across all relation types. Overall, it achieved the highest micro-average F1 score of 0.92. This study underscores the effectiveness of LLMs like GPT in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice. The findings also contribute to advancing informatics applications in traditional and complementary medicine, showcasing the potential of LLMs in natural language processing.
- Abstract(参考訳): アキュポイントの正確な位置は治療効果に欠かせない。
GPT(Generative Pre-trained Transformers)のような大規模言語モデル(LLM)の高度な言語理解能力は、テキスト知識ソースからキューポイント位置に関連する関係を抽出する重要な機会となる。
本研究は,GPTと従来の深層学習モデル(LSTM)とバイオメディカルテキストマイニング用トランスフォーマー(BioBERT)による双方向エンコーダ表現)を比較した。
我々は、西太平洋地域(WHO標準)における世界保健機関標準治療点位置を、361の検問点を記載したコーパスとして利用した。
アクポイント間の5種類の関係('direction_of'、'distance_of'、'part_of'、'near_acupoint'、'located_near')(n=3,174)を注釈した。
BioBERT、LSTM、事前訓練GPT-3.5、微調整GPT-3.5、および事前訓練GPT-4の5モデルを比較した。
パフォーマンス指標には、マイクロ平均一致精度、リコール、F1スコアが含まれていた。
その結果, 微調整GPT-3.5はF1スコアの他のモデルよりも常に優れていた。
全体としては、F1の最高スコアは0.92である。
本研究は, GPT などの LLM が聴取者位置関係の抽出に有効であることを示すとともに, 聴取者の知識を正確にモデル化し, 聴取訓練・実践における標準的実践を促進することを目的としている。
この知見は, 自然言語処理におけるLLMsの可能性を示すとともに, 従来および補完医療における情報応用の進展にも寄与する。
関連論文リスト
- Improving Entity Recognition Using Ensembles of Deep Learning and Fine-tuned Large Language Models: A Case Study on Adverse Event Extraction from Multiple Sources [13.750202656564907]
副作用イベント(AE)抽出は、免疫の安全プロファイルを監視し解析するために重要である。
本研究では,AE抽出における大規模言語モデル(LLM)と従来のディープラーニングモデルの有効性を評価することを目的とする。
論文 参考訳(メタデータ) (2024-06-26T03:56:21Z) - Edinburgh Clinical NLP at SemEval-2024 Task 2: Fine-tune your model unless you have access to GPT-4 [10.01547158445743]
各種大規模言語モデル (LLM) を複数戦略で評価する。例えば、Chain-of-Thought, In-Context Learning, Efficient Fine-Tuning (PEFT) などである。
その結果,2つのPEFTアダプタはF1スコア(+0.0346)とLLMの一貫性(+0.152)を改善した。
3つの指標を平均して、GPT-4は0.8328との競争で1位となった。
論文 参考訳(メタデータ) (2024-03-30T22:27:21Z) - Reshaping Free-Text Radiology Notes Into Structured Reports With Generative Transformers [0.29530625605275984]
構造化報告(SR)は様々な医療社会で推奨されている。
自由テキストレポートから情報を抽出するパイプラインを提案する。
我々の研究は自然言語処理(NLP)とトランスフォーマーベースのモデルを活用することを目的としている。
論文 参考訳(メタデータ) (2024-03-27T18:38:39Z) - Optimal path for Biomedical Text Summarization Using Pointer GPT [21.919661430250798]
GPTモデルは、事実の誤りを発生させ、文脈を欠き、言葉を単純化する傾向にある。
これらの制約に対処するため、GPTモデルの注意機構をポインタネットワークに置き換えた。
ROUGEスコアを用いてポインター-GPTモデルの有効性を評価した。
論文 参考訳(メタデータ) (2024-03-22T02:13:23Z) - HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs [61.41790586411816]
HuatuoGPT-IIは、いくつかのベンチマークで、中国の医学領域における最先端のパフォーマンスを示している。
さらに、ChatGPTやGPT-4といったプロプライエタリなモデルよりも、特に中国伝統医学において優れています。
論文 参考訳(メタデータ) (2023-11-16T10:56:24Z) - Exploring the Boundaries of GPT-4 in Radiology [46.30976153809968]
GPT-4は、複雑なコンテキストにおいて、時折エラーしか発生しない十分なレベルの放射線学知識を持っている。
結果の要約では、GPT-4の出力は、既存の手書きのインプレッションと総合的に比較できる。
論文 参考訳(メタデータ) (2023-10-23T05:13:03Z) - TractGeoNet: A geometric deep learning framework for pointwise analysis
of tract microstructure to predict language assessment performance [66.43360974979386]
拡散磁気共鳴画像(dMRI)による回帰処理を行うための幾何学的深層学習フレームワークであるTractGeoNetを提案する。
回帰性能を向上させるために,新しい損失関数 Paired-Siamese Regression Los を提案する。
本手法の有効性を,2つの言語神経心理学的評価に対して予測することで評価した。
論文 参考訳(メタデータ) (2023-07-08T14:10:37Z) - Improving Large Language Models for Clinical Named Entity Recognition
via Prompt Engineering [20.534197056683695]
本研究は,臨床名付きエンティティ認識(NER)タスクにおける GPT-3.5 と GPT-4 の能力を定量化する。
我々は,ベースラインプロンプト,アノテーションガイドラインに基づくプロンプト,エラー解析に基づく命令,アノテーション付きサンプルを含むタスク固有のプロンプトフレームワークを開発した。
それぞれのプロンプトの有効性を評価し,BioClinicalBERTと比較した。
論文 参考訳(メタデータ) (2023-03-29T02:46:18Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
平均平均精度(mAP)は、異なる種類の音をそれらの関係を考慮せずに独立したクラスとして扱う。
オントロジー認識平均平均精度(OmAP)は、評価中にAudioSetオントロジー情報を利用することで、mAPの弱点に対処する。
我々は人間の評価を行い、OmAPはmAPよりも人間の知覚と一致していることを示した。
論文 参考訳(メタデータ) (2022-11-22T11:35:14Z) - News Summarization and Evaluation in the Era of GPT-3 [73.48220043216087]
GPT-3は,大規模な要約データセット上で訓練された微調整モデルと比較する。
我々は,GPT-3サマリーが圧倒的に好まれるだけでなく,タスク記述のみを用いることで,現実性に乏しいようなデータセット固有の問題に悩まされることも示している。
論文 参考訳(メタデータ) (2022-09-26T01:04:52Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
ホワイトマタートラクトデータを用いた神経心理学的スコア予測のためのディープラーニングに基づくフレームワークを提案する。
各点の微細構造測定を行う点雲として, arcuate fasciculus (AF) を表現した。
Paired-Siamese Lossでは,連続した神経心理学的スコアの違いに関する情報を利用した予測性能を改善した。
論文 参考訳(メタデータ) (2022-07-06T02:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。