Pansharpening of PRISMA products for archaeological prospection
- URL: http://arxiv.org/abs/2404.05447v1
- Date: Mon, 8 Apr 2024 12:29:46 GMT
- Title: Pansharpening of PRISMA products for archaeological prospection
- Authors: Gregory Sech, Giulio Poggi, Marina Ljubenovic, Marco Fiorucci, Arianna Traviglia,
- Abstract summary: This research assesses the usability of pansharpened PRISMA satellite products in geo-archaeological prospections.
Three pan-sharpening methods (GSA, MTF-GLP and HySure) are compared quantitatively and qualitatively and tested over the archaeological landscape of Aquileia (Italy)
- Score: 1.2116854758481392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral data recorded from satellite platforms are often ill-suited for geo-archaeological prospection due to low spatial resolution. The established potential of hyperspectral data from airborne sensors in identifying archaeological features has, on the other side, generated increased interest in enhancing hyperspectral data to achieve higher spatial resolution. This improvement is crucial for detecting traces linked to sub-surface geo-archaeological features and can make satellite hyperspectral acquisitions more suitable for archaeological research. This research assesses the usability of pansharpened PRISMA satellite products in geo-archaeological prospections. Three pan-sharpening methods (GSA, MTF-GLP and HySure) are compared quantitatively and qualitatively and tested over the archaeological landscape of Aquileia (Italy). The results suggest that the application of pansharpening techniques makes hyperspectral satellite imagery highly suitable, under certain conditions, to the identification of sub-surface archaeological features of small and large size.
Related papers
- Synthetic Geology -- Structural Geology Meets Deep Learning [3.216132991084434]
Building on techniques of generative artificial intelligence applied to voxelated images, we demonstrate a method that extends surface geological data to a three-dimensional subsurface region by training a neural network.<n>We close this data gap in the development of subsurface deep learning by designing a synthetic data-generator process that mimics eons of geological activity.<n>A foundation model trained on such synthetic data is able to generate a 3D image of the subsurface from a previously unseen map of surface topography and geology.
arXiv Detail & Related papers (2025-06-11T20:42:28Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.
We propose a MLLM (OmniGeo) tailored to geospatial applications.
By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis [0.31077024712075796]
We introduce EarthScape, a novel, AI-ready multimodal dataset for surficial geologic mapping and Earth surface analysis.
EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data.
As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences.
arXiv Detail & Related papers (2025-03-19T18:23:48Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.
GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.
We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.
Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.
To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel hybrid representation that augments 3DGS with explicit geometric guidance and differentiable PBR equations.
Comprehensive evaluations across diverse datasets demonstrate the superiority of GeoSplatting.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - Self-Supervised Representation Learning for Geospatial Objects: A Survey [21.504978593542354]
Self-supervised learning (SSL) has garnered increasing attention for its ability to learn effective and generalizable representations directly from data without extensive labeled supervision.
This paper presents a survey of SSL techniques specifically applied to or developed for geospatial objects in three primary geometric vector types: Point, Polyline, and Polygon.
We examine the emerging trends in SSL for geospatial objects, particularly the gradual advancements towards geospatial foundation models.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - A Machine Learning Approach to Detecting Albedo Anomalies on the Lunar Surface [0.0]
This study introduces a data-driven approach using machine learning (ML) techniques to explore and predict albedo anomalies on the Moon's surface.
The primary objective is to identify relationships between chemical elements and albedo, thereby expanding our understanding of planetary surfaces.
We present an interactive analytical tool to visualize prediction errors, delineating their spatial and chemical characteristics.
arXiv Detail & Related papers (2024-07-08T11:25:30Z) - A Survey of Generative Techniques for Spatial-Temporal Data Mining [93.55501980723974]
This paper focuses on the integration of generative techniques into spatial-temporal data mining.
The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods.
It also introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline.
arXiv Detail & Related papers (2024-05-15T12:07:43Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - Semi-Automated Segmentation of Geoscientific Data Using Superpixels [4.035753155957697]
Geological processes determine the distribution of resources such as critical minerals, water, and geothermal energy.
Inspired by the concept of superpixels, we propose a deep-learning based approach to segmentized survey data into regions with similar characteristics.
arXiv Detail & Related papers (2023-03-20T19:21:46Z) - Detecting Methane Plumes using PRISMA: Deep Learning Model and Data
Augmentation [67.32835203947133]
New generation of hyperspectral imagers, such as PRISMA, has improved significantly our detection capability of methane (CH4) plumes from space at high spatial resolution (30m)
We present here a complete framework to identify CH4 plumes using images from the PRISMA satellite mission and a deep learning model able to detect plumes over large areas.
arXiv Detail & Related papers (2022-11-17T17:36:05Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Generalized Unsupervised Clustering of Hyperspectral Images of
Geological Targets in the Near Infrared [0.0]
Clustering and classifying spectrally similar materials is often a first step in applications ranging from economic mineral exploration on Earth to planetary exploration on Mars.
Here we develop a fully unsupervised workflow for feature extraction and clustering informed by both expert spectral geologist input and quantitative metrics.
This pipeline provides a fast and accurate clustering map of similar geological materials and consistently identifies and separates major mineral classes in both laboratory imagery and remote sensing imagery.
arXiv Detail & Related papers (2021-06-24T21:05:10Z) - Learning and Recognizing Archeological Features from LiDAR Data [8.135393502095909]
We present a remote sensing pipeline that processes LiDAR (Light Detection And Ranging) data through machine & deep learning.
We aim at identifying geo-spatial areas with archeological artifacts in a supervised fashion allowing the domain expert to flexibly tune parameters based on her needs.
arXiv Detail & Related papers (2020-04-05T05:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.