A Survey of Generative Techniques for Spatial-Temporal Data Mining
- URL: http://arxiv.org/abs/2405.09592v1
- Date: Wed, 15 May 2024 12:07:43 GMT
- Title: A Survey of Generative Techniques for Spatial-Temporal Data Mining
- Authors: Qianru Zhang, Haixin Wang, Cheng Long, Liangcai Su, Xingwei He, Jianlong Chang, Tailin Wu, Hongzhi Yin, Siu-Ming Yiu, Qi Tian, Christian S. Jensen,
- Abstract summary: This paper focuses on the integration of generative techniques into spatial-temporal data mining.
The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods.
It also introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline.
- Score: 93.55501980723974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within spatial-temporal data. However, the emergence of generative techniques such as LLMs, SSL, Seq2Seq and diffusion models has opened up new possibilities for enhancing spatial-temporal data mining further. The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods and introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline. By offering a detailed review and a novel taxonomy of spatial-temporal methodology utilizing generative techniques, the paper enables a deeper understanding of the various techniques employed in this field. Furthermore, the paper highlights promising future research directions, urging researchers to delve deeper into spatial-temporal data mining. It emphasizes the need to explore untapped opportunities and push the boundaries of knowledge to unlock new insights and improve the effectiveness and efficiency of spatial-temporal data mining. By integrating generative techniques and providing a standardized framework, the paper contributes to advancing the field and encourages researchers to explore the vast potential of generative techniques in spatial-temporal data mining.
Related papers
- Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Graph Neural Network for spatiotemporal data: methods and applications [7.612070518526342]
Graph neural networks (GNNs) have emerged as a powerful tool for understanding data with dependencies to each other.
This article aims to provide an overview of the technologies and applications of GNNs in thetemporal domain.
arXiv Detail & Related papers (2023-05-30T02:27:17Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
There are limitations in the existing field, including open-source data being in various formats and difficult to use.
We propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework.
arXiv Detail & Related papers (2023-04-27T17:19:26Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - A Survey on Spatio-temporal Data Analytics Systems [8.798250996263237]
A decade of research and development work has been done in the area of spatial-temporal data analytics.
Main goal was to develop algorithms to capture, manage, analyze and visualize existing works.
arXiv Detail & Related papers (2021-03-17T19:46:16Z) - A Survey on Spatial and Spatiotemporal Prediction Methods [4.353444564058085]
This paper provides a systematic review on principles and methods in spatialtemporal prediction.
We provide a taxonomy of methods categorized by the key challenge they address.
arXiv Detail & Related papers (2020-12-24T18:17:35Z) - A Novel Framework for Spatio-Temporal Prediction of Environmental Data
Using Deep Learning [0.0]
We introduce here a framework for decomposed-temporal prediction of climate and environmental data using deep learning.
Specifically, we introduce functions which can be spatially and mapped on a regular grid allowing the reconstruction of complete-temporal-signal.
Applications on simulated real-world data will show the effectiveness of the proposed framework.
arXiv Detail & Related papers (2020-07-23T07:44:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.