Cell-Free Multi-User MIMO Equalization via In-Context Learning
- URL: http://arxiv.org/abs/2404.05538v2
- Date: Thu, 11 Apr 2024 09:45:13 GMT
- Title: Cell-Free Multi-User MIMO Equalization via In-Context Learning
- Authors: Matteo Zecchin, Kai Yu, Osvaldo Simeone,
- Abstract summary: In-context learning (ICL) can be used to tackle the problem of multi-user equalization.
In this work, we demonstrate that ICL can be also used to tackle the problem of multi-user equalization.
- Score: 39.29335165121442
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large pre-trained sequence models, such as transformers, excel as few-shot learners capable of in-context learning (ICL). In ICL, a model is trained to adapt its operation to a new task based on limited contextual information, typically in the form of a few training examples for the given task. Previous work has explored the use of ICL for channel equalization in single-user multi-input and multiple-output (MIMO) systems. In this work, we demonstrate that ICL can be also used to tackle the problem of multi-user equalization in cell-free MIMO systems with limited fronthaul capacity. In this scenario, a task is defined by channel statistics, signal-to-noise ratio, and modulation schemes. The context encompasses the users' pilot sequences, the corresponding quantized received signals, and the current received data signal. Different prompt design strategies are proposed and evaluated that encompass also large-scale fading and modulation information. Experiments demonstrate that ICL-based equalization provides estimates with lower mean squared error as compared to the linear minimum mean squared error equalizer, especially in the presence of limited fronthaul capacity and pilot contamination.
Related papers
- Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
arXiv Detail & Related papers (2024-08-22T08:02:10Z) - In-Context Learning for MIMO Equalization Using Transformer-Based
Sequence Models [44.161789477821536]
Large pre-trained sequence models have the capacity to carry out in-context learning (ICL)
In ICL, a decision on a new input is made via a direct mapping of the input and of a few examples from the given task.
We demonstrate via numerical results that transformer-based ICL has a threshold behavior.
arXiv Detail & Related papers (2023-11-10T15:09:04Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
arXiv Detail & Related papers (2023-09-03T19:24:34Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
Large language models (LLMs) have initiated a paradigm shift in transfer learning.
In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training.
We find that during ICL, the attention and hidden features in LLMs match the behaviors of a kernel regression.
arXiv Detail & Related papers (2023-05-22T06:45:02Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems [15.423422040627331]
Machine learning can be used to improve multi-user multiple-input multiple-output (MU-MIMO) receive processing.
We propose a new strategy which preserves the benefits of a conventional receiver, but enhances specific parts with ML components.
arXiv Detail & Related papers (2021-06-30T14:02:27Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
We propose an ML-enhanced MU-MIMO receiver that builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
CNNs are used to compute an approximation of the second-order statistics of the channel estimation error.
A CNN-based demapper jointly processes a large number of frequency-division multiplexing symbols and subcarriers.
arXiv Detail & Related papers (2020-12-15T09:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.