論文の概要: STMGF: An Effective Spatial-Temporal Multi-Granularity Framework for Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2404.05774v1
- Date: Mon, 8 Apr 2024 03:38:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 18:58:15.259338
- Title: STMGF: An Effective Spatial-Temporal Multi-Granularity Framework for Traffic Forecasting
- Title(参考訳): STMGF: 交通予測のための効果的な空間時間マルチグラニュラリティフレームワーク
- Authors: Zhengyang Zhao, Haitao Yuan, Nan Jiang, Minxiao Chen, Ning Liu, Zengxiang Li,
- Abstract要約: 本稿では,道路網の長距離・長期情報収集を促進するため,時空間多言語フレームワーク(STMGF)と呼ばれる新しいフレームワークを提案する。
STMGFは、道路網の粒度情報を完全に活用し、階層的インタラクティブな方法で情報を集めることにより、長距離および長期の情報をモデル化する。
- 参考スコア(独自算出の注目度): 12.809369696629625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate Traffic Prediction is a challenging task in intelligent transportation due to the spatial-temporal aspects of road networks. The traffic of a road network can be affected by long-distance or long-term dependencies where existing methods fall short in modeling them. In this paper, we introduce a novel framework known as Spatial-Temporal Multi-Granularity Framework (STMGF) to enhance the capture of long-distance and long-term information of the road networks. STMGF makes full use of different granularity information of road networks and models the long-distance and long-term information by gathering information in a hierarchical interactive way. Further, it leverages the inherent periodicity in traffic sequences to refine prediction results by matching with recent traffic data. We conduct experiments on two real-world datasets, and the results demonstrate that STMGF outperforms all baseline models and achieves state-of-the-art performance.
- Abstract(参考訳): 正確な交通予測は、道路網の空間的・時間的側面により、インテリジェント交通において困難な課題である。
ロードネットワークのトラフィックは、既存のメソッドがモデリングに不足している場合、長距離または長期の依存関係によって影響を受ける可能性がある。
本稿では,道路網の長距離・長期情報収集を促進するため,時空間多言語フレームワーク(STMGF)と呼ばれる新しいフレームワークを提案する。
STMGFは、道路網の粒度情報を完全に活用し、階層的インタラクティブな方法で情報を集めることにより、長距離および長期の情報をモデル化する。
さらに、トラフィックシーケンスの固有の周期性を活用して、最新のトラフィックデータにマッチして予測結果を洗練する。
実世界の2つのデータセットで実験を行い、STMGFが全てのベースラインモデルより優れ、最先端のパフォーマンスを達成することを示した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting [3.614768552081925]
交通速度予測のためのマルチ適応時空間フローグラフニューラルネットワーク(MAF-GNN)を提案する。
MAF-GNNは、トラフィックノード間の複数の遅延空間依存性をキャプチャする、効果的なマルチアダプティブ・アジャシエイト・マトリクス機構を導入している。
パブリックトラフィックネットワークの2つの実世界のデータセットであるMETR-LAとPeMS-Bayでは、他のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-08-08T09:06:43Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。