Forecasting Electric Vehicle Battery Output Voltage: A Predictive Modeling Approach
- URL: http://arxiv.org/abs/2404.05776v1
- Date: Mon, 8 Apr 2024 06:47:03 GMT
- Title: Forecasting Electric Vehicle Battery Output Voltage: A Predictive Modeling Approach
- Authors: Narayana Darapaneni, Ashish K, Ullas M S, Anwesh Reddy Paduri,
- Abstract summary: The battery management system plays a vital role in ensuring the safety and dependability of electric and hybrid vehicles.
It is responsible for various functions, including state evaluation, monitoring, charge control, and cell balancing, all integrated within the BMS.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The battery management system plays a vital role in ensuring the safety and dependability of electric and hybrid vehicles. It is responsible for various functions, including state evaluation, monitoring, charge control, and cell balancing, all integrated within the BMS. Nonetheless, due to the uncertainties surrounding battery performance, implementing these functionalities poses significant challenges. In this study, we explore the latest approaches for assessing battery states, highlight notable advancements in battery management systems (BMS), address existing issues with current BMS technology, and put forth possible solutions for predicting battery charging voltage.
Related papers
- Deep-MPC: A DAGGER-Driven Imitation Learning Strategy for Optimal Constrained Battery Charging [5.192596329990163]
This manuscript introduces an innovative solution to confront the inherent challenges associated with conventional predictive control strategies for constrained battery charging.
Results drawn from a practical battery simulator that incorporates an electrochemical model highlight substantial improvements in battery charging performance.
arXiv Detail & Related papers (2024-06-23T02:36:02Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Driving behavior-guided battery health monitoring for electric vehicles
using machine learning [7.6366651125971945]
We propose a feature-based machine learning pipeline for reliable battery health monitoring.
We first summarized and analyzed various individual health indicators (HIs) with mechanism-related interpretations.
All features were carefully evaluated and screened based on estimation accuracy and correlation analysis.
arXiv Detail & Related papers (2023-09-25T13:24:53Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks.
We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator) for forecasting the battery SoH.
arXiv Detail & Related papers (2021-03-30T12:19:21Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data.
In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available.
arXiv Detail & Related papers (2020-11-08T23:55:02Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.