IA2: Leveraging Instance-Aware Index Advisor with Reinforcement Learning for Diverse Workloads
- URL: http://arxiv.org/abs/2404.05777v2
- Date: Wed, 10 Apr 2024 08:23:48 GMT
- Title: IA2: Leveraging Instance-Aware Index Advisor with Reinforcement Learning for Diverse Workloads
- Authors: Taiyi Wang, Eiko Yoneki,
- Abstract summary: Instance-Aware Index Advisor (IA2) is a novel deep reinforcement learning (DRL)-based approach for optimizing index selection in databases.
IA2 introduces the Twin Delayed Deep Deterministic Policy Gradient - Temporal Difference State-Wise Action Refinery (TD3-TD-SWAR) model.
- Score: 0.46040036610482665
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces the Instance-Aware Index Advisor (IA2), a novel deep reinforcement learning (DRL)-based approach for optimizing index selection in databases facing large action spaces of potential candidates. IA2 introduces the Twin Delayed Deep Deterministic Policy Gradient - Temporal Difference State-Wise Action Refinery (TD3-TD-SWAR) model, enabling efficient index selection by understanding workload-index dependencies and employing adaptive action masking. This method includes a comprehensive workload model, enhancing its ability to adapt to unseen workloads and ensuring robust performance across diverse database environments. Evaluation on benchmarks such as TPC-H reveals IA2's suggested indexes' performance in enhancing runtime, securing a 40% reduction in runtime for complex TPC-H workloads compared to scenarios without indexes, and delivering a 20% improvement over existing state-of-the-art DRL-based index advisors.
Related papers
- AutoIndexer: A Reinforcement Learning-Enhanced Index Advisor Towards Scaling Workloads [0.46040036610482665]
AutoIndexer is a framework that combines workload compression, query optimization, and specialized RL models to scale index selection effectively.<n>It substantially lowers search complexity without sacrificing much index quality.<n>On average, it outperforms state-of-the-art RL-based index advisors by approximately 20% in workload cost savings.
arXiv Detail & Related papers (2025-07-30T20:38:13Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - LLMIdxAdvis: Resource-Efficient Index Advisor Utilizing Large Language Model [24.579793425796193]
We propose a resource-efficient index advisor that uses large language models (LLMs) without extensive fine-tuning.
LLMs frames index recommendation as a sequence-to-sequence task, taking target workload, storage constraint, and corresponding database environment as input.
Experiments on 3 OLAP and 2 real-world benchmarks reveal that LLMIdxAdvis delivers competitive index recommendation with reduced runtime.
arXiv Detail & Related papers (2025-03-10T22:01:24Z) - A New Paradigm in Tuning Learned Indexes: A Reinforcement Learning Enhanced Approach [6.454589614577438]
This paper introduces LITune, a novel framework for end-to-end automatic tuning of Learned Index Structures.
LITune employs an adaptive training pipeline equipped with a tailor-made Deep Reinforcement Learning (DRL) approach to ensure stable and efficient tuning.
Our experimental results demonstrate that LITune achieves up to a 98% reduction in runtime and a 17-fold increase in throughput.
arXiv Detail & Related papers (2025-02-07T15:22:15Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Variational Delayed Policy Optimization [25.668512485348952]
In environments with delayed observation, state augmentation by including actions within the delay window is adopted to retrieve Markovian property to enable reinforcement learning (RL)
State-of-the-art (SOTA) RL techniques with Temporal-Difference (TD) learning frameworks often suffer from learning inefficiency, due to the significant expansion of the augmented state space with the delay.
This work introduces a novel framework called Variational Delayed Policy Optimization (VDPO), which reformulates delayed RL as a variational inference problem.
arXiv Detail & Related papers (2024-05-23T06:57:04Z) - Efficient Architecture Search via Bi-level Data Pruning [70.29970746807882]
This work pioneers an exploration into the critical role of dataset characteristics for DARTS bi-level optimization.
We introduce a new progressive data pruning strategy that utilizes supernet prediction dynamics as the metric.
Comprehensive evaluations on the NAS-Bench-201 search space, DARTS search space, and MobileNet-like search space validate that BDP reduces search costs by over 50%.
arXiv Detail & Related papers (2023-12-21T02:48:44Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores.
Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance.
We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option.
arXiv Detail & Related papers (2023-10-02T17:16:26Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
We propose Diverse Policy Optimization (DPO) to model the policies in structured action space as the energy-based models (EBM)
A novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler.
Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies.
arXiv Detail & Related papers (2023-02-23T10:48:09Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm.
L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity.
Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
arXiv Detail & Related papers (2022-02-25T18:20:14Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.